• Title/Summary/Keyword: unbonded

Search Result 210, Processing Time 0.029 seconds

Evaluation of Ultimate Tendon Stress in Prestressed Concrete Members with External Unbonded Tendons (외부 비부착 강선을 가진 부재의 극한 강선응력 평가)

  • 오병환;유성원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.381-386
    • /
    • 1999
  • The member with external unbonded tendon has two remarkable characteristics, i.e., eccentricity variation and slip by friction force at deviators, compared with internal bonded or unbonded member. An efficient numerical procedure for the nonlinear analysis of prestressed concrete beam with external unbonded tendon considering two remarkable characteristics is formulated and corresponding computer code is developed. On the basis of statistical process of parametric study results, strain compatibility method, eccentricity variation predictor and tendon stress predictor at ultimate state are proposed and verified with test results and existing Codes, which can evaluate flexural behavior at ultimate state. Finally, the proposed procedure and predictors can be efficiently used for the realistic and accurate analysis of prestressed concrete members with external unbonded tendons.

  • PDF

Overestimation of Ultimate Tendon Stress in a Prestressed Concrete Beam with Unbonded Tendons (비부착 긴장재를 갖는 프리스트레스트 콘크리트 보에서 긴장재 응력의 과대평가)

  • 이종윤;임재형;문정호;신경재
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.73-81
    • /
    • 1999
  • The present study is to examine the ACI code equations for computing the unbonded tendon stress at flexural failure of prestressed beams. The equations examined for their validity are Eq. 18-4 and Eq. 18-5 of the ACI 318-95. Since the possibility of overestimation was expected with the equations, a numerical study, first, was carried out with influential variables included. From this study, it was found that amount of reinforcements, effective prestress, location of tendons, and loading type may affect the overestimation of the unbonded tendon stress. Then, an experimental study was carried out with those variables. A total of 8 specimens was tested to prove the theoretical findings as well as the effect of those variables. As a result. it was proven that the ACI Code equations can overestimate significantly the unbonded tendon stress for certain cases.

Evaluation of Ultimate Strength Design Equations for Stress Calculation of Unbonded Tendons (비부착 긴장재의 응력산정을 위한 극한강도 설계식의 평가)

  • 임재형;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 1999
  • The present study is to investigate the possibility of overestimation or underestimation when the ACI Code equations are used to evaluate the unbonded tendon stress. An experimental program was planned with 6 beams which divided into two groups. Each group consisted of 3 beams to check the possibility of overestimation or underestimation of unbonded tendon stress. The experimental results were also compared with various design equations including the one proposed by Moon and Lim. It was proven that the ACI Code equations may overestimate or underestimate the unbonded tendon stress in certain cases.

Modeling of post-tensioned one-way and two-way slabs with unbonded tendons

  • Kim, Uksun;Huang, Yu;Chakrabarti, Pinaki R.;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.587-601
    • /
    • 2014
  • A sophisticated finite element modeling approach is proposed to simulate unbonded post-tensioned concrete slabs. Particularly, finite element contact formulation was employed to simulate the sliding behavior of unbonded tendons. The contact formulation along with other discretizing schemes was selected to assemble the post-tensioned concrete system. Three previously tested unbonded post-tensioned two-way and one-way slabs with different reinforcement configurations and boundary conditions were modeled. Numerical results were compared against experimental data in terms of global pressure-deflection relationship, stiffness degradation, cracking pattern, and stress variation in unbonded tendons. All comparisons indicate a very good agreement between the simulations and experiments. The exercise of model validation showcased the robustness and reliability of the proposed modeling approach applied to numerical simulation of post-tensioned concrete slabs.

Optimal Design of Stem Shape for Artificial Hip Prosthesis with Unbonded Cement Mantle (시멘트 비접착 인공 고관절의 주대 형상 최적 설계)

  • Choi, Don-Ok;Yoon, Yong-San
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.932-938
    • /
    • 2001
  • This study is concerned with the shape optimization of stem for the artificial hip prosthesis with unbonded cement mantle. The artificial hip prosthesis with unbonded cement mantle allows a stem to slip on cement mantle because of polished stem surface. Unbonded cement mantle type has several advantages compared with bonded cement mantle type, for example, small micro motion, preventing stress shielding and so on. In this study, 2-dimensional axisymmetric model was developed with considering characteristics of unbonded cement mantle. Moreover, optimal shape of stem was obtained by using feasible direction method. The objective of this optimization is maximizing supported vertical loading. The slip motion and stresses of stem, cement mantle and bone is used for constraints. The optimal shape which obtained by this study has slope of 0.15 in proximal part and maintains the width about 5mm in distal part In addition, simplified 3-dimensional analysis which applying optimal shape is carried out. The result of 3-dimensional analysis showed that optimal shape has some advantages for cement mantle stress. However, more realistic 3-dimensional analysis which including bending effect, complex geometries etc. is needed in further research.

  • PDF

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

Analysis of Prestressed Concrete Continuous Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 PS 콘크리트 연속부재의 해석적 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.197-208
    • /
    • 1995
  • The prestressed concrete continuous members with unbonded tendons were investigated while comparing the experimental data with the analytical results. The comparison was carried out with the program TAPS which can take into account the unbonded tendon effects. The subjects that were interested included the load-deflection response, the design equations for the tendon stress at failure, the effects of bonded reinforcements, the effects of span-depth ratio, the effects of loading type. In this paper, contiriuous prestressed concrete members with unbonded ten dons were investigated. Of twelve tests with continuous members, six were two-span beams and six were three span one-way slats. Analytical results were compared favorably with experimental data and disclosed that the tendon stress at flexural failure is the function of the amount of bonded reinforcements, the loading types and patterns, and the tendon profile.

A Relation between Anchor Unbonded Length, Anchor Loads, and Wall Deflection in Tieback Anchored Wall (타이백 억지토류벽에서 앵커 자유장 및 앵커하중의 크기와 벽체변위와의 상관성)

  • 임유진
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.187-200
    • /
    • 1999
  • An extensive investigation is performed to analyze the behavior of tieback anchored wall. Finite element method is used and several case histories are collected to investigate the relationship of wall deflection, anchor unbonded length, and anchor load. The finite element method can calculate wall deflection with changing the anchor unbonded length and the anchor load. Wall deflection normalized by excavation height can be related to anchor location so that it may produce a zone chart. It is found that a different chart showing the relation of the wall deflection, the anchor load, and anchor unbonded length can be constructed. It is necessary to collect more case histories considering soil conditions and to perform FE analysis extensively with changing bonded length to extend the capability of this relation chart into practice.

  • PDF

Effects of No Stiffness Inside Unbonded Tendon Ducts on the Behavior of Prestressed Concrete Containment Vessels

  • Noh, Sang-Hoon;Kwak, Hyo-Gyong;Jung, Raeyoung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.805-819
    • /
    • 2016
  • The numerical simulation methodologies to evaluate the structural behaviors of prestressed concrete containment vessels (PCCVs) have been substantially developed in recent decades. However, there remain several issues to be investigated more closely to narrow the gap between test results and numerical simulations. As one of those issues, the effects of no stiffness inside unbonded tendon ducts on the behavior of PCCVs are investigated in this study. Duct holes for prestressing cables' passing are provided inside the containment wall and dome in one to three directions for general PCCVs. The specific stress distribution along the periphery of the prestressing duct hole and the loss of stiffness inside the hole, especially in an unbonded tendon system, are usually neglected in the analysis of PCCVs with the assumption that the duct hole is filled with concrete. However, duct holes are not small enough to be neglected. In this study, the effects of no stiffness inside the unbonded tendon system on the behaviors of PCCVs are evaluated using both analytical and numerical approaches. From the results, the effects of no stiffness in unbonded tendons need to be considered in numerical simulations for PCCVs, especially under internal pressure loading.

The Comparison of Bonded/Unbonded Stem-Cement Interface in Total Hip Replacement -Experimental Study (인공 고관절 전치환술에서 주대-시멘트 경계층의 접착 및 비접착 고정술의 비교를 위한 실험적 연구)

  • Han, J.H.;Yoon, Y.S.;Lee, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.951-955
    • /
    • 2001
  • The experimental comparison between bonded and unbonded types stem-cement interface was carried out on axisymmetric stem-cement-aluminum model of the femoral component of a total hip replacement. Human femur was modeled in non-tapered and tapered($7.5^{\circ}$) aluminum hollow cylinders to emulate the diaphyseal and metaphyseal segments of the femur. For unbonded type, we tested stems with three different taper angles($5^{\circ},\;7.5^{\circ},\;10^{\circ}$). In every case, the cement-aluminum interface was designed to endure 8MPa shear strength. (a measured value at cement-bone interface) We tested aluminum models under axial loading for both cases. As an experimental result, it was found that unbonded stem sustained more axial load as bonded stem in both cases, diaphyseal and metaphyseal models. The unbonded types failed in cement mantle under axial compressive load, while the bonded ones failed in shear at cement-aluminum interface. These results suggest that a polished stem will sustain much higher axial load than a roughened stem. And a polished stem will make more stable cement-bone interface that may promote better osteosythesis around the stem.

  • PDF