• Title/Summary/Keyword: ultraviolet ray

Search Result 325, Processing Time 0.023 seconds

Differential Growth Response and Gene Expression in Relation to Capsidiol Biosynthesis of Red Pepper Plant and Cultured Cells by γ-Ray and UV Stress (방사선과 자외선에 대한 고추 식물체 및 배양세포의 생장반응과 Capsidiol 생합성 유전자의 발현 차이)

  • An, Jung-Hee;Kim, Jae-Sung;Jeong, Jeong-Hag;Oh, Sei-Myoung;Kwon, Soon-Tae
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.201-206
    • /
    • 2003
  • Differential responses of red pepper plant and cultured cells to enhanced ${\gamma}$-ray($^{60}$ Co) and ultraviolet(UV) stress were investigated. In seed treatment, 1 Gy of ${\gamma}$-ray increased seedling dry weight up to 19.1%, but 50 Gy treatment markedly ingibited seed germination and subsequent growth of seedling. UV treatment to seed did not change the germination ability of seeds and the growth of seedlings regardless of duration of UV treatment until 24 hrs. In case of UV treatment to seedlings, plant injury was seriously progressed even after the seedlings were returned to no UV condition, and eventually all the leaves showed chlorosis by the stress. However, progress of plant injury by ${\gamma}$-ray stress slower than that caused by UV stress, and even at the high dose of ${\gamma}$-ray 50 Gy, did not caused the cholrosis of stressed plant leaf. Amount of electrolytes leakage from plant leaf by UV treatment for 24hrs was increased up to 28.8 folds in comparison with untreated control, whereas that of 50 Gy of ${\gamma}$-ray was increased only 1.2 folds. UV stress induced the production of capsidiol, antimicrobial phytoalexin, by activation of gene expression involved in capsidiol biosynthesis, such as sesquiterpene cyclase and cyclase and cytochrome P450 hydroxylase in the leaf and cultured cell, but ${\gamma}$-ray stress induced neither the production of capsidiol nor expression of the genes.

FUV Spectral Images of the Vela Supernova Remnant: Comparisons with X-ray and $H{\alpha}$ images

  • Kim, Il-Joong;Seon, Kwang-Il;Min, Kyoung-Wook;Han, Wonyong;Edelstein, Jerry
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.99.2-99.2
    • /
    • 2012
  • We updated the far-ultraviolet (FUV) spectral images of the entire Vela supernova remnant (SNR) using newly processed FIMS/SPEAR data. In the present study, we compare the newly produced FUV images with the X-ray and $H{\alpha}$ images, and examine how the Vela SNR evolves and interacts with the ambient medium on a global scale. The comparison with X-ray images has revealed a FUV filamentary feature corresponding with the boundary of the northeast-southwest asymmetry of the X-ray shell. The relatively low O IV] ${\lambda}1404$ to O III] ${\lambda}{\lambda}1661$, 1666 ratio estimated on the FUV filament is compatible with the previous proposal that the observed asymmetry of the Vela SNR could be due to the ${\gamma}2$ Velorum stellar wind bubble (SWB). The southwest FUV features surrounding a faint extended X-ray region are characterized as the region where the Vela SNR is interacting slightly stronger with ambient mediums within the dim X-ray southwest section. From a comparison with the $H{\alpha}$ image, we identify a ring-like $H{\alpha}$ feature overlapped with an extended hot X-ray feature of similar size and two local peaks of C IV ${\lambda}{\lambda}1548$, 1551 emission. Their morphologies are consistent with the expected shape when the $H{\alpha}$ ring is in direct contact with the near or far side of the Vela SNR. We suggest that the B3V-type star HD 76161 found at the center of the $H{\alpha}$ ring would be the exciting source of the H II region.

  • PDF

A Study on the UV-cut Properties of Cotton Fabrics Treated with UV-absorber (자외선 흡수제 처리 면직물의 소비성능 개선(제1보) - 자외선 차단성능에 관한 연구 -)

  • 강미정;권영아
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.5
    • /
    • pp.925-932
    • /
    • 2001
  • The influence of ultraviolet(UV)-ray in sun light on human skin has been noted. Textiles can provide protection against harmful UV-radiation. Normally UV-absorbing finishes are used to get better protection. The purpose of this study is to evaluate the UV-cut properties of cotton fabrics treated with UV-absorber. 2,2-dihydroxy-4,4-dimethoxbenzophenone, as UV-absorber was applied to 100% cotton fabric. Reagents added in finishing solution were Triton X-100, polyethylene glycol 400, and $MgCl_2{\cdot}6H_2O$, and C.I. Direct Red 81. Both untreated and treated cotton fabrics were exposed to a xenon arc lamp for 20 and 80 hours. UV absorption spectra of finishing solutions and UV transmission spectra of fabrics were measured by the UV/VIS spectrophotometer. The results of this study can be summarized as follows. The results of this study can be summarized as follows. Absorption and the related transmission spectra were modified in a controlled way with UV-absorber. Absorption effect of UV-absorber was improved by adding Triton X-100, PEG 400, and $MgCl_2{\cdot}6H_2O$ in finishing solution. The UV absorption of finishing solution was in the following order: U/D/T/P/M>D/T/P/M> D/T> D/P, D>U/T/P/M>U/T>T/P/M>T. The UV transmittance of cotton fabrics was remarkably decreased by the application of UV-absorber and additives. The UV-cut properties were most improved by the application of U/D/T/P/M.

  • PDF

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

Photoluminescence Properties of Novel $Mg_{2}SnO_{4}:Mn$ Phosphor (새로운 $Mg_{2}SnO_{4}:Mn$ 형광체의 광 발광 특성)

  • Kim, Kyung-Nam;Jung, Ha-Kyun;Park, Hee-Dong;Kim, Do-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.817-821
    • /
    • 2001
  • A new $Mg_{2-x}MN_xSnO_4$ phosphor with an inverse spinel structure was synthesized by the solid-state reaction technique. The photoluminescence properties of the $Mg_2SnO_4$:Mn phosphors were investigated under 147nm -vacuum ultraviolet ray excitation. The Mn-doped $Mg_2SnO_4$ phosphor exhibited high emission intensity with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2SnO_4$:Mn phosphor has originated from energy transfer from $^4T_1$ to $^6A_1$ of $Mn^{2+}$ ion at tetrahedral site of the spinel structure. The $Mn^{2+}$ ion concentration exhibiting the maximum emission intensity under the excitation of 147nm-vacuum ultraviolet ray was 0.25mol%. And the decay time of the phosphor was shorter than 10ms.

  • PDF

Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes

  • Jiang, Yinhua;Luo, Yingying;Lu, Ziyang;Huo, Pengwei;Xing, Weinan;He, Ming;Li, Jiqin;Yan, Yongsheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.76-82
    • /
    • 2014
  • 1-Methylimidazole-2-thiol, as a kind of mercaptans, is a typical organic pollutant which has not been efficiently removed. In this study, titanium dioxide ($TiO_2$) photocatalyst based on magnetic multi-walled carbon nanotubes (MWCNTs) was synthesized via hydrothermal and sol-gel methods. The as-prepared photocatalyst was extensively characterized by X-ray diffraction (XRD), X-ray energy diffraction spectrum (EDS), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectra, UV-Vis diffuse reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM). This photocatalyst of $TiO_2$/$Fe_3O_4$/MWCNTs was proved to exhibit high photocatalytic efficiency and the photodegradation rate could reach nearly 82.7% for the degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation. In addition, the results demonstrated that inorganic ions had a negative impact on photodegradation of 1-methylimidazole-2-thiol to varying degrees. Moreover, pH had a great and complex effect on photocatalytic degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation.

Contact Microscopy by Using Soft X-ray Radiation from Iodine Laser Produced Plasma (옥소레이저 플라즈마에서 발생된 연 X-선을 이용한 밀착현미경기술)

  • 최병일;김동환;공홍진;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 1990
  • Laser plasma was generated by a 1GW iodine photodissociation laser ($\lambda$=1.315$\mu\textrm{m}$, E=12.7J) whose output beam was focused on a molybdenum target surface. The experiment was conducted in a vacuum chamber under 1D-sTorr and several tens of laser shooting were necessary for sufficient exposure for the PBS resist of 111m thickness. Aluminium was coated on the top of the resist by 0.1$\mu\textrm{m}$ thickness which acts as an X-ray filter to cut off the visible and the ultraviolet lights. A bio-specimen was put directly on the aluminium coated resist and located at a distance of 3 cm from the X-ray source. The replicas of a steel mesh, spider's web. and a red blood cell were obtained by this technique and were observed by Nomarski microscope and SEM. The limitation of its resolution is determined by the X-ray source size and Fresnel diffraction effect, and its theoretical prediction is well matched with the experimental results. In this experiment, a resolution better than 0.1$\mu\textrm{m}$ could be obtained. ained.

  • PDF

X-Ray Diffraction Study on the Cellulose Structures in Wood Cell Wall (X선 회절법을 이용한 목재세포벽중의 셀룰로오스의 구조해석)

  • 김남훈;이선호
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • Lignin in wood cell walls influeced the transformation of the cellulose crystal structure during mercerization. Samples of sound and decayed woods by white rot fungus of Quercus mongolica were treated with 20% aquous NaOH solution, followed by washing and drying, and delignified. The effect of delignification on cellulose structure was investigated by a series of an X-ray diffraction analysis and ultraviolet(UV) microscopy. Delignification of alkali-treated woods did not influence their cellulose crystal structures. It may be concluded that lignin prevents the swelling of wood cellulose during mercerization and restrain the intermingling of cellulose chains.

  • PDF

A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Yeong-Seong;Jeong, Sun-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

CaxSr2-xSiO4:Eu2+ Green-emitting Nano Phosphor for Ultraviolet Light Emitting Diodes

  • Kim, Jong Min;Choi, Hyung Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.249-252
    • /
    • 2014
  • The aim of this work is to investigate the effect of $Ca_xSr_{2-x}$ and activator on the structural and luminescent properties of green-emitting $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ nano phosphor. Using urea as fuel and ammonium nitrate as oxidizer, $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ has been successfully synthesized, using a combustion method. The particles were found to be small, spherical and of round surface. SEM imagery showed that the phosphors particles are of nanosize. The $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ emission spectrum for 360 nm excitation showed a single band, with a peak at 490 nm, which is a green emission. The highest luminous intensity was at $1,000^{\circ}C$, which was obtained when the $Eu^{2+}$ content (y) was 0.05. The results support the application of $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). Characteristics of the synthesized $Ca_xSr_{2-x}SiO_4:Eu^{2+}$ phosphor were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and photoluminescence (PL) detection.