• Title/Summary/Keyword: ultraviolet germicidal irradiation

Search Result 6, Processing Time 0.022 seconds

A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices

  • Ahmad Rois Mansur;Hyun Sung Lee;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2023
  • Ultraviolet C (UV-C, 200-280 nm) light has germicidal properties that inactivate a wide range of pathogenic and spoilage microorganisms. UV-C has been extensively studied as an alternative to thermal decontamination of fruit juices. Recent studies suggest that the efficacy of UV-C irradiation in reducing microorganisms in fruit juices is greatly dependent on the characteristics of the target microorganisms, juice matrices, and parameters of the UV-C treatment procedure, such as equipment and processing. Based on evidence from recent studies, this review describes how the characteristics of target microorganisms (e.g., type of microorganism/strain, acid adaptation, physiological states, single/composite inoculum, spore, etc.) and fruit juice matrices (e.g., UV absorbance, UV transmittance, turbidity, soluble solid content, pH, color, etc.) affect the efficacy of UV-C. We also discuss the influences on UV-C treatment efficacy of parameters, including UV-C light source, reactor conditions (e.g., continuous/batch, size, thickness, volume, diameter, outer case, configuration/arrangement), pumping/flow system conditions (e.g., sample flow rate and pattern, sample residence time, number of cycles), homogenization conditions (e.g., continuous flow/recirculation, stirring, mixing), and cleaning capability of the reactor. The collective facts indicate the immense potential of UV-C irradiation in the fruit juice industry. Existing drawbacks need to be addressed in future studies before the technique is applicable at the industrial scale.

Tuberculosis Infection Control in Health-Care Facilities: Environmental Control and Personal Protection

  • Lee, Ji Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.234-240
    • /
    • 2016
  • Transmission of tuberculosis (TB) is a recognized risk to patients and healthcare workers in healthcare settings. The literature review suggests that implementation of combination control measures reduces the risk of TB transmission. Guidelines suggest a three-level hierarchy of controls including administrative, environmental, and respiratory protection. Among environmental controls, installation of ventilation systems is a priority because ventilation reduces the number of infectious particles in the air. Natural ventilation is cost-effective but depends on climatic conditions. Supplemented intervention such as air-cleaning methods including high efficiency particulate air filtration and ultraviolet germicidal irradiation should be considered in areas where adequate ventilation is difficult to achieve. Personal protective equipment including particulate respirators provides additional benefit when administrative and environmental controls cannot assure protection.

Numerical Analysis of Airborne Infection Control Performance of Germicidal Systems in a Temporary Shelter (수치해석을 이용한 임시대피소 내 공기감염확산 저감장치의 성능 분석)

  • Park, Jeongyeon;Sung, Minki;Lee, Jaewook
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2015
  • Purpose : When natural disaster occurs, the victims are evacuated to temporary shelters such as indoor gymnasiums or large space buildings until their homes are recovered. If someone in this temporary shelter is infected with an airborne infectious disease, it becomes easier for the disease to spread to the other people in the shelter than it would be under normal conditions. Therefore, temporary shelters need to provide not only water and food but also hygienic indoor conditions. Methods : In this study, the use of mechanical systems such as ultraviolet germicidal irradiation (UVGI) systems and air cleaners were simulated using numerical analysis to find out how these systems can control airborne infection in temporary shelters. An indoor gymnasium was selected as a temporary shelter for the numerical simulation model considering Korea's post-disaster response system. Influenza A virus was assumed as an airborne infectious disease and the diffusion of the virus was made by one person in the shelter. Results : The result of this study showed that the UVGI systems disinfected the virus more effectively than the air cleaners by creating a more stable airflow after the disinfection process. The air cleaners could remove the virus but since it created an unstable airflow in the temporary shelter, the virus was condensed to a certain area to show a higher virus concentration level than the source location. Implications : In the temporary shelter, it is necessary to use UVGI systems or air cleaners for hygienic indoor conditions.

A Study on the Effective Removal Method of Microbial Contaminants in Building According to Bioviolence Agents (Bioviolence Agents에 따른 건물내 미생물오염원의 효율적인 제거방안에 관한 연구)

  • Lee, Hyun-Woo;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.881-890
    • /
    • 2010
  • As Influenza A virus(H1N1) has been spreading more rapidly around globe, the study on the airborne disease which is transimitted through the respiratory system is on the rise. In this study, the multizone simulation of the public building against bioviolence is performed in the case of unexpected spread of microbial contaminants, such as bioviolence agent, Influenza A, Smallpox, B. anthrax and transport and control characteristics of above three kinds of bioviolence agents are evaluted. Results suggest that Influenza A and Smallpox which has small mean diameter can be more removable than B. anthrax by using high UVGI grade condition and B. anthrax which has large mean diameter can be more removable than Influenza A and Smallpox by using high filter grade condition. Results also suggest that installing a combined air treatment system is more effective to reduce the damage and engineers will use immune building technology for removing the bioviolence agents effectively.

3D-printed Face Shields for Healthcare Professionals Battling COVID-19 Pandemic

  • Kim, Gyeong-Man;Assefa, Dawit;Kang, Joon Wun;Gebreyouhannes, Esayas
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.226-237
    • /
    • 2020
  • As the number of reported COVID-19 cases rises around the world, regions affected by the virus are taking serious measures to contain its spread. Face shields are one of the highest-need personal protective equipment (PPE) during COVID-19 pandemic. Beyond traditional face masks, as known cases of the coronavirus soar, currently there is a significant shortage of face shields around the world. In response, the protective face shields were designed and fabricated with open-source 3D modelling software and 3D printing technology, respectively. Our face shield consisted of two parts only; a reusable 3D printed headband and a visor made of transparent plastic sheet, as barrier. The resulting 3D printed face shields are affordable, lightweight, one-size-fits-most and ready-to-wear with minimal assemblies, and go on easily over glass, goggle and face mask. To ensure being donated to the healthcare professionals without risk infected by any pathogens, the 3D printed face shields were successfully be disinfected with ultraviolet germicidal irradiation (UVGI dosage of 1000 mJ/cm2) and 70% alcohol. For routine disinfection a UVGI chamber was designed and optimized to provide uniform UV-C illumination with an appreciated fluence for complete decontamination. More than 1,000 face shields were produced already and donated to the special hospitals for COVID-19 patients, quarantines, government and medical agencies in Ethiopia as well as in East-African countries. With certainty, our intention goes beyond the hospitals and other first responders, but not limited for all those who have to stay in the service or be in contact with many other people in the time of COVID-19 pandemic.

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF