This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The increase in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.
An automatic multi-threshold algorithm for segmentation of 2D ultrasound images based on average filtering and the characteristics of speckle noise in 2D ultrasound image is proposed. To do this, we investigate the histogram of difference between $7{\times}7$ averaging histogram and $3{\times}3$ averaging histogram. And, we find zero crossing points in the positive portion of the differenced histogram and select middle points of the zero crossing points. We assign these selected points to characteristic points. The thresholds are the center of two characteristic points. Then we segment 2D ultrasound image by using these thresholds and extract edges from applying edge operator to optimal segmented image. Experimental results show that the segmented regions are devided accurately around the homogeneous region.
본 논문에서는 요부 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에 나타낸다. 본 논문에서 제안하는 기법과 히스토그램 기반 양자화 기법에 대해 15장의 요부 초음파 영상에 적용한 결과, 본 논문에서 제안된 양자화 방법이 효과적인 것을 확인할 수 있었다.
International journal of advanced smart convergence
/
제11권2호
/
pp.185-193
/
2022
There have been various studies in Korea to develop a %IMF(Intramuscular Fat Percentage) estimation method suitable for Hanwoo. Recently, a %IMF estimation method using a convolutional neural network (CNN), a kind of deep learning method among artificial intelligence methods, has been studied. In this study, we performed a performance comparison when various preprocessing methods were applied to the %IMF estimation of ultrasound images using CNN as mentioned above. The preprocessing methods used in this study are normalization, histogram equalization, edge enhancement, and a method combining normalization and edge enhancement. When estimating the %IMF of Hanwoo by the conventional method that did not apply preprocessing in the experiment, the accuracy was 98.2%. The other hand, we found that the accuracy improved to 99.5% when using preprocessing with histogram equalization alone or combined regularization and edge enhancement.
This study was carried out to show at the fractal analysis complements the practical disadvantage of gray level histogram which is designed to measure the quantitative classification of echo patterns in ultrasonographic image of parenchymal organs such as spleen and kidney and it is a practical method of measurement for quantitative classification. By using ultrasonographs, kidney and spleen of 21 healthy Beagles were fixed under different gain settings to be scanned for echo patterns and results were analyzed with body gray level histogram and fractal analysis. Then it was compared based on the statistical data obtained. Although there was a proportionate increase in histogram along with gain settings, there were consistencies in the fractal dimension. In terms of quantitative analysis in ultrasonographic images, fractal analysis is concluded to complement the practical disadvantage of gray level histogram.
혈관내 초음파(Intravascular Ultrasound, IVUS)는 혈관 내벽의 단면을 보여주는 검사 방법으로 관상 동맥 내의 내강, 죽상 경화반, 그리고 혈관벽의 변화에 관한 직접적이고 구체적인 정보를 제공한다. 본 논문에서는 IVUS 영상에서 내막과 외막을 추출하고 각 막의 지름을 자동적으로 추출하는 방법을 제안한다. 제안된 방법은 IVUS 영상에 Histogram Equalization 기법을 적용하여 명암 대비를 강조한 후에 퍼지 이진화 기법과 평균 이진화 기법을 각각 적용하여 내막과 외막을 추출하기 위해 이진화한다. 이진화된 내막과 외막의 각 영역 중에서 혈관내 초음파 영상 중심에서 가장 큰 영역의 정보를 이용하여 라벨링 기법을 적용하여 내막과 외막 영역을 추출하고 각 막의 지름을 계산한다. 제안된 방법을 IVUS 영상을 대상으로 실험한 결과, 내막과 외막의 지름이 비교적 정확히 추출되는 것을 실험을 통하여 확인하였다.
초음파 장비는 여러 질환을 진단하는 장비로서 널리 사용되고 있으나, 초음파영상 품질의 평가방법에서는 정량적 표준이 없는 실정이다. 따라서 본 연구에서는 ATS-539 다목적 팬텀 내 8 mm 표적의 파라미터로서 주파수, Dynamic range, 초점수를 변화하여 예민도의 SNR과 영상의 히스토그램을 분석하고 왜곡도를 측정하여 표적별 적합한 주파수 및 파라미터를 도출하여 초음파영상의 병변 진단율을 향상 하고자 한다. 실험재료는 초음파 장비, ATS-539 다목적 팬텀을 사용하며, 실험방법은 영상 평가 팬텀의 8 mm를 주파수(2, 3, 4 MHz, 하모닉 3, 4, 4.5 MHz), Dynamic range(58, 68, 78, 88, 98), Focus(2, 4, 6개)를 변화시키면서 85장의 영상을 획득한다. 8 mm 영상의 예민도를 Image J 프로그램에서 각 표적별 SNR을 측정하고, 왜곡도는 신호의 히스토그램에서 백그라운드 값을 뺄셈하여 측정한다. 측정 결과 값에서 상위 40% 결과에서 파라미터 변화에 따라 예민도의 SNR, 왜곡도의 변화양상의 데이터 값을 산출하여 초음파 장비에서 적절한 영상의 품질을 나타내는 파라미터를 도출하였다. 결과는 초점수가 증가하면 SNR이 높고 왜곡도가 감소하며, 주파수 4 MHz에서 SNR값이 높고 왜곡도가 감소하였다. 그리고 Dynamic range 88, 98에서 최적의 영상을 나타내었으며, 실험 결과값을 기초로 초음파영상의 품질을 평가한다면 보다 정확한 초음파 진단이 가능할 것으로 사료된다.
초음파 영상은 미세한 명암도 차이 등에 의해 분석 과정에서 근육 영역의 위치와 크기를 판단하는데 어려움이 발생하고 이로 인해 근육 영역을 파악하는데 주관성이 개입된다. 본 논문에서는 근육 영역을 객관적으로 분석하기 위해ART2 신경망을 적용하여 양자화를 수행한 후, 국부적 영역에서 근육 영역을 추출한다. 초음파 영상에서 히스토그램 평활화와 엔드인 탐색 알고리즘을 적용하여 명암도의 분포와 밝기 값을 보정한 후, ART2 신경망을 이용하여 유사한 영역을 클러스터링 한다. 클러스터링 된 각 영역의 크기, 위치 및 명암도 정보를 분석하여 피하지방, 근막, 기타 배경 영역으로 분류한다. 최종적인 근육 영역은 근막 내부 객체들 간의 거리, 각도를 이용하여 추출된다. 실제 초음파 영상 대상 실험 결과, 일반적인 클러스터링 기법을 적용한 방법 보다 ART2 기반 양자화와 제안된 영역 확장 기법으로 근육 영역을 추출하고 분석하는 것이 효율적임을 확인하였다.
본 연구에서는 Optical Flow Method의 추적 성능을 향상시키기 위한 전처리 알고리즘을 제안한다. 제안하는 알고리즘은 Median Filter, Binarization, Morphology, Canny Edge, Contour Detecting 및 Approximation Method를 기반으로 개발되었다. Optical Flow 추적 성능 향상 여부를 평가하기 위해 Lucas-Kanade Optical Flow 알고리즘에 개발된 전처리 알고리즘을 적용하고, 전처리 알고리즘이 적용되지 않은 Optical Flow 영상과 추적 결과를 비교 분석하였다. 또한, Median Filter와 Histogram Equalization으로 구성된 기존 전처리 알고리즘과의 결과 비교를 통해, 개발된 전처리 알고리즘의 추적 성능 향상여부를 평가하였다. 실험결과, 전처리 알고리즘을 적용하지 않은 영상과 기존 전처리 알고리즘을 적용한 영상은 특징영역의 분할이 이루어지지 않아, Optical Flow의 추적 정확도가 매우 낮게 나타났다. 반면, 개발된 전처리 알고리즘을 적용한 영상에서는 외곽선이 내외부로 세분화되고, 외곽선 트리가 구성됨에 따라 Optical Flow의 추적 성능이 매우 높게 나타났다.
International journal of advanced smart convergence
/
제8권1호
/
pp.24-34
/
2019
In this research, a practical deep learning framework to differentiate the lesions and nodules in breast acquired with ultrasound imaging has been proposed. 7408 ultrasound breast images of 5151 patient cases were collected. All cases were biopsy proven and lesions were semi-automatically segmented. To compensate for the shift caused in the segmentation, the boundaries of each lesion were drawn using Fully Convolutional Networks(FCN) segmentation method based on the radiologist's specified point. The data set consists of 4254 benign and 3154 malignant lesions. In 7408 ultrasound breast images, the number of training images is 6579, and the number of test images is 829. The margin between the boundary of each lesion and the boundary of the image itself varied for training image augmentation. The training images were augmented by varying the margin between the boundary of each lesion and the boundary of the image itself. The images were processed through histogram equalization, image cropping, and margin augmentation. The networks trained on the data with augmentation and the data without augmentation all had AUC over 0.95. The network exhibited about 90% accuracy, 0.86 sensitivity and 0.95 specificity. Although the proposed framework still requires to point to the location of the target ROI with the help of radiologists, the result of the suggested framework showed promising results. It supports human radiologist to give successful performance and helps to create a fluent diagnostic workflow that meets the fundamental purpose of CADx.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.