• Title/Summary/Keyword: ultrasonic wire bonding

Search Result 17, Processing Time 0.026 seconds

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.

Vibration Characteristics of a Wire-Bonding Transducer Horn (와이어 본딩용 트랜스듀서 혼의 진동 특성)

  • Yim, Vit;Han, Dae-Ung;Lee, Seung-Yeop;An, Geun-Sik;Gang, Gyeong-Wan;Kim, Guk-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.583-588
    • /
    • 2007
  • This paper investigates the vibration characteristics of a wire-bonding transducer horn for high speed welding devices. The sample wire-bonder uses the input frequency of 136 kHz. The ultrasonic excitation causes the various vibrations of transducer horn and capillary. The vibration modes and frequencies close to the exciting frequency are identified using ANSYS. The nodal lines and amplification ratio of the ultrasonic horn are also obtained in order to evaluate the bonding performance of the sample wire-bonder system. The FEM results and experimental results show that the sample wire-bonder system uses the bending mode of 136 kHz as principal motion for bonding. The major longitudinal mode exists at 119 kHz below the excitation frequency. It is recommeded that the sample system is to set the excitation frequency at 119 kHz to improve bonding performance.

  • PDF

Finite Element Analysis of an Ultrasonic Horn for Wire Bonding (Wire Bonding Head Horn 설계 및 유한요소해석)

  • Kim, Won-Jong;Hwang, Eun-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.111-115
    • /
    • 2012
  • Ultrasonic meching technoloy has been developed over recent years for wire bonding.In this study, ultrasonic welding horn is analysed and designed with FEM, then manufactured based on it. The wire bonding mechine has been designed by conical horn model with very easy to come by and is readily accessible. The analysis is carried out by SoldEdge & Ansys software.

A Study on the Aluminum Wire Bondingby Using Ultrasonic Vibrator (초음파 진동자를 이용한 알루미늄 와이어 용접에 관한 연구)

  • 김희수;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.571-576
    • /
    • 1994
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. In order to improve the currently used wire bonding machine using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic composed of piezoelectic vibrator and horn. This study investigates the design conditions affecting the dynamic characteristics through the theoretical and experimental analysis of piezoelectric vibrator and horn, The study conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. In theoretical model, the integrated modeling is conducted via a combination of dynamic identification of piezoelectric vibrator and theoretical analysis of horn. Hence comparison is made for theoretical and experimental results of the dynamic characteristics of the ultrasonic transducer composed of piezoelectric vibrator and horn. Form the results of this study we develop the design technique of ultrasonic transducer using dynamic characteristic analysis and propose the possibility of ultrasonic welding considering the optimal condition of the natural frequency and vibration mode of horn.

  • PDF

Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer (초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접)

  • Lee, G.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

Study on the Bonding Pad Lift Failure in Wire Bonding (와이어 본딩시 본딩 패드 리프트 불량에 관한 연구)

  • 김경섭;장의구;신영의
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1079-1083
    • /
    • 1998
  • In this study, ultrasonic power of Aluminum wire bonder, bond time and bond force are investigated and valued in order to minimize failure of bonding pad lift. We also tried to control those 3 factors properly. We got the conclusion that if we turn down the ability of ultrasonic power or bond time, we can get a pad lift from a boundary between bond pad ad wire because pad metal and wire joining is unstable, but it is best condition when it ultrasonic power is 100∼130unit, bond time is 15∼20msec and bond force is 4∼6gf.

  • PDF

HIGH-FREQUENCY AND COMPLEX VIBRATION ULTRASONIC WIRE BONDING SYSTEMS

  • Jiromaru Tsujino;Tetsugi Ueoka;Takahiro Mori;Koichi Hasegawa;Daisuke Kadota
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.824-829
    • /
    • 1994
  • High-frequency and complex vibration ultrasonic wire bonding systems are propsed and their welding characteristic are studied. Ultrasonic wire bonding is used widely for joining thin connecting wire of various electronic devices including IC or LSI. Conventional bonding systems use vibration frequency of 40 or 60 kHz and linear vibration welding tips. Complex vibration welding tip which vibrates in elliptical to circular or rectangular to square in the same or different frequency is effective to join welding specimens in shorter welding time and under smaller vibration amplitude, and furthermore high-frequency systems such as 90, 120, 190 kHz are also significantly effective. High-frequency and complex vibration welding system of 90, 120 and 190 kHz are designed. Welding characteristics of these systems are found very superior than a conventional system. Welding specimens of aluminum wire of 0.1mm diameter are successfully.

  • PDF

Design of Ultrasonic Tool Horn for Wire Wedge Bonding (와이어 본딩용 초음파 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Oh, Myung-Seok;Ma, Jeong-Beom
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.717-722
    • /
    • 2013
  • In this study, we investigated the design of a wire wedge bonding ultrasonic tool horn using finite element method (FEM) simulations. The proposed method is based on an initial design estimate obtained by FEM analysis. An ultrasonic excitation causes various vibrations of a transducer horn and capillary. A simulated ultrasonic transducer horn and resonator are then built and characterized experimentally using a laser interferometer and electrical impedance analyzer. The vibration characteristics and resonance frequencies close to the exciting frequency are identified using ANSYS. FEM analysis is developed to predict the resonance frequency of the ultrasonic horn and use it in the optimal design of an ultrasonic horn mode shape.

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.