• Title/Summary/Keyword: ultrasonic wave propagation

Search Result 196, Processing Time 0.022 seconds

Characteristics of Ultrasonic Propagation of the fruit and Vegetables

  • Lee, Y.H.;Kim, M.S.;Cho, Y.K.;Cho, D.S.l
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.344-353
    • /
    • 1996
  • A fundamental study was conducted to obtain the basic data involved in nondestructive quality evaluation of the fruit and vegetables. An experimental equipment for ultrasonic propagation characteristics of the fruit and vegetables such as radish , carrot , potato, and apple was set up and also power spectrum analysis system of an ultrasonic wave through the fruit and vegetables was set up. The velocity and attenuation of ultrasonic wave through the tissue specimens from the fruit and vegetables were measured and analyzed. The elastic modulus and density by the mechanical method currently used were compared with those using by ultrasonic method. The ultrasonic tranit time was almost linearly increased with the length of the specimens and attenuation of ultrasonic was mainly affected by the internal flbrous structure of the products. The regression equation was derived from the highly correlated experimental variables.

  • PDF

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

Propagation Characteristic of Ultrasonic on Slit Defect in Butt Joint (맞대기 용접부내의 인공 결함에서 초음파의 전파특성)

  • 남영현
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.37-47
    • /
    • 1996
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of ultrasonic wave is related to determination of testing sensitivity, scanning pitch and defect location. This paper investigated the directivity of ultrasonic wave, which scattered from slit defect located in heat-affected zone (HAZ) in butt joint using visualization method. The directivity of shear waves scattered from slit defect were different according to probe direction (far defect, near defect) and probe position (forward movement, maximum echo position, backward movement). The difference of directivity of reflection wave was existed between 2 MHz and 4 MHz angle probes. In the case of 2 MHz angle probe, the directivity of reflection wave was appeared sharp form because of the relation wave length and defect size.

  • PDF

The determination of transducer location and ultrasonic wave propagation through temperature gradients in fillet are welding (온도구배가 있는 필릿용접에서 초음파의 전파와 탐촉자의 위치 결정)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.109-117
    • /
    • 1997
  • The temperature gradient in weldment changes the transit time and distorts the direction of the ultrasound beam to the higher temperature regions due to the lower sound speed in the hotter regions of the weldment. This paper describes a ray-tracing method for calculating the effects of temperature gradients on ultrasonic propagation in fillet arc weldig. In the method, weldment is conceptually devided into a number of layers and the refraction and sound speed at each layer is calculated using the temperature which calculated from analytical solution. Calculating the time and location of echoes arrived from various interfaces around a molten weld pool determines the optimum location of ultrasonic transducers and the correct position of flaws.

  • PDF

Modulus and Damping Properties of Kaolinite Using Ultrasonic Testing (초음파를 이용한 카올린 점토의 계수 및 감쇠 특성)

  • 민덕기
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • The objective of the present research is to evaluate the wave propagation velocity and attenuation characteristics of kaolin clay specimens using ultrasonic testing. Test specimens with known initial micro-fabric were prepared using a two-stage slurry consolidation technique. For a known state of stress conditions, initial void ratio, and micro-fabric, a series of experiments were conducted to evaluate the longitudinal wave propagation velocity and associated damping behavior. The effects of major variables involved in ultrasonic testing of cohesive soil were considered in this study. Ultrasonic velocity was not correlated to the microfabric structure under the given consolidated pressure whereas ultrasonic attenuation was affected by the microstructural properties of the specimen.

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.

A Study on Temperature Features of Broadband Ultrasonic Attenuation (초음파 광역 감쇠의 온도 특성에 관한 연구)

  • 신정식;안중환;한승무;김형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.245-248
    • /
    • 1997
  • The distilled water is used for the ultrasonic wave propagating material in the measurements of broadband ultrasonic attenuation (BUA) that is applied in industrial and medical applications, The acoustic impedance of water is significantly changed with its temperature. Therefore, the quantitative evaluation of BUA with temperature and the ultrasonic wave propagating distance is highly needed. In this study, we evaluated the variation of attenuation with change in temperature. To measure the variation of BUA in the low frequency region at the temperatures, 27$^{\circ}C$, 29$^{\circ}C$, and 31$^{\circ}C$, we tested the Plyethylene, Teflon, MC-Nylon, Urethane specimens and analyzed the center frequency, frequency bandwidth, spectral peak amplitude. The results showed that BUA value appeared to be lower with increasing temperature. This may be due to the fact that the frequency feature of ultrasonic wave is affected by not only the specific gravity, acoustic impedence, but material crystalline, porosity, the distance of ultrasonic wave propagation in water.

  • PDF

Nondestructive Evaluation for Material Degradation of 2.25Cr-1Mo steel by Ultrasonic Wave (초음파를 이용한 재질열화의 비파괴적 평가)

  • 김정석;박은수;박인근;김현묵
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.369-374
    • /
    • 2000
  • This study has been achieved on the characteristics of ultrasonic wave in 2.25Cr-1Mo steel to evaluate the feasibility of ultrasonic nondestructive technique on the assessment of aging degradation. The measured values were used find a relationship between the ultrasonic propagation properties and degradation such as coarsening of carbides and precipitates. The ultrasonic attenuation coefficient was mainly affected by the grain size of prior austenitic phase as well as degradation. In this results, degradation and grain size in 2.25Cr-1Mo steel was able to cope with the changes in ultrasonic wave properties by applying the nondestructive evaluation method

  • PDF

Nondestructive Evaluation Technique of Painted Sandwich Control Surfaces of CN-235 using Full-field Pulse-echo Ultrasonic Propagation Imaging System (전영역 펄스-에코 초음파전파영상화 시스템의 CN-235의 도색된 샌드위치 조종면 In-situ 비파괴평가 기술)

  • Hong, Seung-Chan;Lee, Jung-Ryul;Park, Jongwoon
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.288-292
    • /
    • 2016
  • In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is introduced. The system nondestructively inspected targets with two-axis translation stage. The coincident laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. Structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are painted sandwich control surfaces. In addition, the inspection results of FF PE UPI system are compared with conventional ultrasonic testing methods such as waterjet and portable C-scan.

Study on Application of Ultrasonic Propagation Imager for Non-destructive Evaluation of Composite Lattice Structure (복합재 격자 구조 비파괴평가를 위한 초음파전파 영상화 시스템 활용 연구)

  • Park, Jae-Yoon;Shin, Hye-Jin;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • Composite lattice structures are tried to be used in various fields because of its benefit in physical properties. With increase of demand of the composite lattice structure, nondestructive testing technology is also required to certificate the quality of the manufactured structures. Recently, research on the development of the composite lattice structure in Republic of Korea was started and accordingly, fast and accurate non-destructive evaluation technology was needed to finalize the manufacturing process. This paper studied non-destructive testing methods for composite lattice structure using laser ultrasonic propagation imaging systems. Pulse-echo ultrasonic propagation imaging system was able to inspect a rib structure wrapped with a skin structure. To reduce the time of inspection, a band divider, which can get signal in different frequency bands at once, was developed. Its performance was proved in an aluminum sandwich panel. In addition, to increase a quality of results, curvature compensating algorithm was developed. On the other hand, guided wave ultrasonic propagation imaging system was applied to inspect delamination in a rib structure. To increase an area of inspection, multi-source ultrasonic wave propagation image was applied, and defects were successfully highlighted with variable time window amplitude mapping algorithm. These imply that ultrasonic propagation imaging systems provides fast and accurate non-destructive testing results for composite lattice structure in a stage of the manufacturing process.