• Title/Summary/Keyword: ultrasonic vibrations

Search Result 52, Processing Time 0.02 seconds

Effect of Pressing Force Applied to a Rotor on Revolution Characteristics in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향)

  • 김영균;김진수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • The ultrasonic motor have recently begun to be used for certain unique practical utilizations in the fields of industrial medical consumer and automotive applications. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The metal and ceramic composite component was used as the stator element to generate ultrasonic vibrations. The ultrasonic motor used here was the windmill type ultrasonic motor operated by single-phase AC source. The windmill type ultrasonic motors has only three components; a stator element of two windmill shape slotted metal endcaps a rotor and a bearing. In this paper a prototype motor with 11.35 mm diameter was fabricated then relationship between the pressing force applied to a rotor and the rotation characteristic of windmill type ultrasonic motor are investigated when stator’s slots was changed from 4, 6, 8 and thickness changed from 0.15, 0.20 mm, respectively. Optimum pressing force applied to a rotor in the six stators was 1.2 mN.

  • PDF

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

Development of Multi-DOF Ultrasonic Motor Using PZT (PZT를 이용한 다자유도 초음파 모터 개발)

  • Son, Young-Wan;Takemura, Kenjiro;Park, Shin-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.53-62
    • /
    • 2010
  • This study introduces about development of multi-DOF ultrasonic motor that are composed of a bar-shaped stator and a spherical rotor. The ultrasonic motor is a motor which is operated by vibrations over frequency of 20kHz. The multi-DOF ultrasonic motor will be developed by expanding the basic theory of existing 1-DOF ultrasonic motor. It can generate 3-DOF rotation of the rotor around perpendicular axes using 3 vibration modes of stator. By using finite element methods, the optimal dimension of stator is decided and made the components of stator. When we apply the multi-DOF ultrasonic motor composed of rotor and stator to the driving test system, it will be checked whether the motor can be driven at the direction of 3-DOF or not. And it is proposed how the simulation of square bar shaped multi-DOF ultrasonic motor is accomplished.

Optimal Welding condition in Ultrasonic Welding of Ni steel sheet (Ni 박판의 초음파 용착시 최적용착 조건)

  • Seo, Jeong Seok;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • Miniaturization and lightweight are increasingly the recent trend in the manufacture of electric appliances and machine parts. So technology of micro joining for joining materials is indispensable. This paper gives a description of an experimental study of the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without producing significant amount of heat. Ultrasonic metal welder consists of Transducer, Booster, and Horn that are designed very accurately to get the natural frequencies and vibration mode. In this study, The horn was designed and analyzed the natural frequency by the modal analysis and harmonic analysis. And using a fiber optic sensor, we measured the amplitude and analyzed the Fast Fourier Transformed result. Using the horn, Ultrasonic metal welding between Ni sheet and Ni sheet of 0.1mm thickness was accomplished under the optimal conditions of static pressure 0.15MPa, vibration amplitude 45% and welding time of 0.28s. This result can be used for ultrasonic metal welding in manufacturing industry.

Ultrasonic Welding Technology for Solar Thermal Collector

  • Kim, Sung-Wook;Chun, Chang-Keun;Kim, Sook-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.221-225
    • /
    • 2009
  • A solar thermal collector is a solar collector specifically intended to collect heat: that is, to absorb sunlight to provide heat. A flat plate is the most common type of solar thermal collector, and is usually used as a solar hot water panel to generate solar hot water. A flat plate collector consists basically of an insulated metal box with a glass or a plastic cover and a dark-colored copper absorber plate. Solar radiation is absorbed by the copper absorber plate and transferred to water that circulates through the collector in copper tubes. Ultrasonic welding is an industrial technique whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. In this study, we developed solar collector ultrasonic welding machine with digital controlled power supply and tested various welding conditions such as welding pressure, welding amplitude, welding speed. Welding speed was considered in 2~12m/min. The width of ultrasonic welds was increased with welding amplitude by 2.2~2.5mm. The fracture load of ultrasonic welds showed 20% higher than domestic products.

  • PDF

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

The Relation of Enhancement Heat Transfer to Acoustic Pressure by Acoustic Streaming (음향흐름에 의한 음압과 열전달 촉진과의 관계)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.591-596
    • /
    • 2005
  • The objectives in the present study are to investigate that the enhancement heat transfer was experimentally measured and was compared with the acoustic pressure obtained by numerical analysis. From the results of the present study, a strong Fluid motion initiated by ultrasonic vibrations can affect heat and mass transfer. This phenomenon. called acoustic streaming, clearly observed by PIV measurement leads to increase in velocity of a Fluid which is a crucial physical concept to explain the enhancement heat transfer. The heat transfer coefficient is increased with increase in the ultrasonic intensities. The largest enhancement heat transfer (about 26%) is measured at the ultrasonic intensity of 300W. Acoustic streaming results from sudden acoustic pressure variations in the liquid. The results of numerical analysis reveal that acoustic pressure is increased by 59.5% at the ultrasonic intensity of 300W. The higher acoustic pressure near four ultrasonic transducers develops more intensive flow destroying the flow instability. Also, the profiles of acoustic pressure variation are consistent with those of enhancement heat transfer.

  • PDF

Ultrasonic Engancement of Flow in Clayey Sands (점토질 모래에서의 Ultrasonic을 이용한 투수성의 증진)

  • 이광열
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.63-69
    • /
    • 1993
  • Remediation technology becomes an issue in environmental engineering. The vibro-recovery technique is one of popular means to remove pollutants from contaminated soils and groundwater. Using Ultrasonic excitation in soil-fluid medium, it was found that removal efficiency in a mechanical effects was significant. In this paper, therefore, laboratory experiments were conducted on clayey sand soil columns using a probe-type ultrasonic processor. Ultrasonic treatment with simultaneous pumping enhances dislodgement of clay particles, and ultrasonic excitation reduced the proportions of finer particles and thus result in increased hydraulic conductivity significantly. Also, the results provided the changes in grain size distribution curve of the soil due to ultrasonic excitation. The results indicated that the maximum size of particles mobilized by Ultrasonic is about 0.004mm and particles in the size range from 0.04mm to 1.0mm were subjected to fracturing. The economic feasibility of Ultrasonic implementation is considered in power requirement of the generator and maintenance of the horn. At a specified amplitude of vibrations, the power requirement of the generator depends on overburden pressure of the horn, temperature and viscosity of fluid in the soil medium. For comparisons, the requirement of a one inch and two inch diameter horn sonicators are compared with the power required for pumping water from different depths.

  • PDF

Investigation on polyvinyl butyral interlayered and ultrasonic vibration-assisted friction stir welded AA7075-T651 joints

  • Vaibhav S. Gaikwad;Satish Chinchanikar
    • Advances in materials Research
    • /
    • v.13 no.6
    • /
    • pp.507-525
    • /
    • 2024
  • In this study, the performance of polyvinyl butyral interlayered friction stir welded (PVBFSWed) and ultrasonic vibration-assisted friction stir welded (UVaFSWed) AA7075-T651 joints are investigated, considering the effect of tool rotation and welding speed. The joints' tensile strength, microhardness, microstructure, and fracture behavior are evaluated. The UVaFSWed joints showed better performance compared to the PVBFSWed joints. The highest tensile strength of 322.8 MPa and microhardness of 157 Hv in weld nugget is observed for the UVaFSWed joint at a tool rotation of 2000 rpm and welding speed of 40 mm/min. However, the lowest surface roughness of 7.98 ㎛ was observed for the UVaFSWed joint at a tool rotation of 1400 rpm and welding speed of 40 mm/min. Comparatively lower tensile strength and microhardness were observed for the PVBFSWed joints compared to UVaFSWed joints. The fracture for the UVaFSWed and PVBFSWed joints mainly occurred in the heat-affected zone during the tensile test. The scanning electron microscopy (SEM) images show the more uniform, equiaxed grain distribution in the UVaFSWed joint.

Experimental and Analytical Study of a Cooling Mechanism Using Acoustic Streaming by Ultrasonic Vibrations (초음파진동에 의한 음향유동을 활용한 냉각 메카니즘의 실험 및 이론적 연구)

  • Loh, Byoung-Gook;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.694-702
    • /
    • 2003
  • A cooling mechanism using acoustic streaming by ultrasonic vibrations and associated convective heat transfer enhancement is investigated experimentally and analytically. Acoustic streaming pattern and associated heat transfer characteristics are presented. Analytical transient temperature profile of the heated plate following Nyborgs theory is accomplished along with experimental measurement. A temperature drop of 30 C is obtained in 4 minutes with vibration amplitude of 10${\mu}{\textrm}{m}$. As the vibration amplitude is further increased to 25${\mu}{\textrm}{m}$ a temperature drop of 40 C is achieved that is the maximum temperature drop obtained with the current experimental apparatus. Analytical heat transfer solutions verified a temperature drop of 4$0^{\circ}C$ with a vibration amplitude of 25${\mu}{\textrm}{m}$ at 28.4 kHz which is experimentally obtained.