• Title/Summary/Keyword: ultrasonic velocity ratio

Search Result 131, Processing Time 0.025 seconds

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Use of Guided Waves for Monitoring Material Conditions in Fossil-Fuel Power Plants (판파를 이용한 화력 발전 설비의 물성 평가)

  • Cho, Youn-Ho;Jung, Kyung-Sik;Lee, Jae-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.695-700
    • /
    • 2010
  • Material properties of the lock plate, which covers the gas-turbine blade, are studied using ultrasonic guided waves. The lock plate is a crucial part of a gas-turbine power plant. The wave velocity and attenuation coefficient are measured to investigate the changes in the material properties under three heat-treatment conditions. Compared to the destructive mechanical tests, the material characterization of Inconel X-750 can be performed more efficiently and nondestructively by using ultrasonic guided waves; this characterization helps identify the changes occurring in its elastic moduli and Poisson's ratio under different heat-treatment conditions. The wave velocity and hardness of Inconel X-750 are proportional to each other. This nondestructive technique for the measurement of material properties can be widely used in various industries to avoid catastrophic failure. It is also expected that the guided-wave technique can be applied as a new cost- and time-saving inspection tool for longer and wider inspection ranges.

Analysis of the residual strengths and failure mechanisms in laminated composites under impact loading

  • Park, K.C.;Kim, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.3
    • /
    • pp.105-121
    • /
    • 1994
  • In this paper, we proposed the two-parameter model for predicting the residual strength in CFRP laminated composites subjected to high velocity impact and developed and formulated it based upon Cparino's by using the ratio of impact and the normalized residual strength. Critical indentation was obtained by the statical indentation tests. Impact tests were carried out through air-gun type impact equipment with the velocities varied 30-100m/sec. Projectiles were steel balls with 5 and 7mm in diameter. Test material was carbon/epoxy. The specimens were composed of [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$\_$2/ and [ .+-. 45 .deg. ]$\_$4/stacking sequences and had 0.75$\^$T/*0.26$\^$W/*100$\^$L/(mm) dimension. Results from the proposed model were in good agreement with the test data. And failure mechanism due to high velocity impact is given here to examine the initation and deveolpment of damage by fractography and ultrasonic image system. The effects of the 0 .deg. -direction ply position and the amount to damage area on the residual strength are considered here.

Effects of Driving Frequency on Propagation Characteristics of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (정상초음파의 교란을 받는 메탄-공기 예혼합화염의 전파특성에 대한 초음파 구동 주파수의 영향)

  • Bae, Dae Seok;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Flow Structure Prediction for a Square Harbour using Various Wall Boundary Conditions (다양한 벽 경계조건을 이용한 정사각형 항구의 흐름구조 예측)

  • Kang, Yun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.151-158
    • /
    • 1999
  • A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.

  • PDF

Composition and Strength Characteristics of Concrete Foundation for Affiliated Ward in Seoul Daehan Uiwon (General Hospital) (서울 대한의원(사적 제248호) 부속병동 콘크리트 기초의 조성과 강도 특성)

  • Kang, San Ha;Kim, Dong Woo;Lee, Chan Hee;Kim, Hyun Mi
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.299-312
    • /
    • 2016
  • The Daehan Uiwon (Historic Site No. 248) in which the predecessor of Seoul National University Hospital is a crucial medical institution that built in the Korean Empire period. One of them, East 1 Affiliated Ward that attached to Daehan Uiwon was built with concrete foundation in 1908 and extended two times in 1935 and 1954. As a result of material scientific analysis for concrete foundation, all of the foundation is composed of mortar and stone aggregates, however, the mixing proportions between the aggregate and the mortar were confirmed to be different with construction periods. To determine the mixing proportion, and physical properties by ultrasonic velocity and rebound hardness, the concrete foundations by construction period were obtained. In result, 1954's mixing proportion of concrete between mortar and stone aggregate indicated the highest ratio of aggregates with 1 : 35, mean value of ultrasonic velocity and unconfined compressive strength were calculated with 450 m/s and 18.92 MPa in 1954's constructions that is the lowest values compared with other times. As a result, the difference characteristics of physical properties by construction periods are possible interpreted with porosities and mixing ratios of stone aggregates.

Integrity evaluation of rock bolts in the field by using hammer-impact reflection method (해머 타격 반사법을 이용한 현장 록볼트 건전도 평가)

  • Yu, Jung-Doung;Bae, Myeong-Ho;Lee, Yong-Jun;Min, Bok-Ki;Lee, In-Mo;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • Rock bolts and shotcrete play a crucial role as a main support system in the underground space. Thus, the safety of the underground space may be affected by the defect of rock bolts. In order to evaluate the rock bolt integrity by using non-destructive technique, the transmission method of the guided ultrasonic waves, which are generated by using the piezo disk elements has been successfully performed. The energy generated by the piezo disk elements, however, is not enough for the rock bolts in the field. In addition, the piezo disk elements should be installed at the end of the steel bar during construction of the rock bolts. The purpose of this study is the devolvement of the reflection method, which may generate enough energy, and the application in the field rock bolts. Both laboratory and field tests are carried out. The guided ultrasonic waves with high energy are generated by the hammer impact with the center punch, and the AE sensor is used to measure the reflected guided waves. The received guided waves are analyzed by the wavelet transform. The peak value of the wavelet transform produces the energy velocity, which is used for the evaluation of the rock bolt integrity. The energy velocity increases with an increase in the defect ratio in both laboratory and field rock bolts. This study demonstrates that the hammer-impact reflection method may be a suitable method for the evaluation of the rock bolt in the field.

Evaluation of Microscopic Damage to TIG Welded Carbon Steel using Acoustic Emission and Ultrasonic Test (음향방출과 초음파를 이용한 TIG 용접탄소강의 미시적 손상평가)

  • Lee, Joon-Hyun;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.5-10
    • /
    • 2012
  • In this study, carbon steel (A53) is used as the material for the pipes in a marine plant and ship industry. Welds are necessary to join the carbon steel, and the effect of this welding on the properties of the carbon steel has been studied by many researchers. In this study, the dynamic behavior of welded carbon steel was studied using an acoustic emission (AE) technique, which is a nondestructive test. There are numerous AE parameters that can be used to analyze the damage behavior of carbon steel by external loading. The AE parameters of energy, cumulative count, amplitude, and AE event were used, and each parameter was differentiated according to the degree of damage to the carbon steel. The energy showed a high level at the elastic range of the load curve, while the amplitude had the highest value at the hardening region. The cumulative count showed a growth tendency similar to the loading curve. In addition, an ultrasonic technique and hardness test were applied to evaluate the mechanical properties according to the base zone, HAZ region, and weld zone of the weld specimen. The velocity and attenuation ratio showed little change between zones, and an evaluation of the ultrasonic waves on each zone of the specimen was found to be a useful method to clarify the mechanical properties of the carbon steel.