• Title/Summary/Keyword: ultrasonic velocity ratio

Search Result 131, Processing Time 0.027 seconds

An Experimental Study on Recycled Aggregate Concrete for Artificial Fishing Reefs (인공어초 개발을 위한 재생골재 콘크리트의 실험적 연구)

  • 홍종현;김문훈;우광성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.16-22
    • /
    • 2003
  • The mechanical characteristics of newly recycled aggregate concrete on the basis of the proposed mix design model have been studied to develop the precast artificial fishing reefs. In the first task, the experimental test for the recycled aggregates taken from Jeju Island has been carried out to verify the material properties in terms of specific gravity, percentage of solids, absorption and abrasion of coarse aggregates. In the second task, the experimental parameters of newly recycled aggregate concrete are investigated to meet with the requirements of guidelines with respect to slump, unit weight, pH, ultrasonic velocity, void ratio, and compressive strength which are made of sea-shore sand ad slag cement. The natural aggregate and polypropylene fiber are added to newly recycled aggregate concrete to improve the compressive strength and quality. The optimal mix proportions for compressive strength are W/C=30%, S/a=15%, NA/G=50% in porous concrete case, W/C=40%, S/a=45% in plain concrete case, and W/C=40%, S/a-45%, PF=1.0kg/㎥ in fiber reinforced concrete case.

Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash

  • Hwang, Chao-Lung;Bui, Le Anh-Tuan;Chen, Chun-Tsun
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.631-647
    • /
    • 2012
  • This paper focuses on the application of Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of high performance concrete (HPC), with the aid of error function, and then to study the effect of rice husk ash (RHA) on the performance of HPC. The residual RHA, generated when burning rice husk pellets at temperatures varying from 600 to $800^{\circ}C$, was collected at steam boilers in Vietnam. The properties of fresh and hardened concrete are reviewed. It is possible to obtain the RHA concrete with comparable or better properties than those of the specimen without RHA with lower cement consumption. High flowing concrete designed by the proposed method was obtained without bleeding or segregation. The application of the proposed method for HPC can save over 50% of the consumption of cement and limit the use of water. Its strength efficiency of cement in HPC is 1.4-1.9 times higher than that of the traditional method. Local standards of durability were satisfied at the age of 91 days both by concrete resistivity and ultrasonic pulse velocity.

Engineering Properties of Lightweight Concrete Using Surlightweight Aggregate (초경량골재를 사용한 경량콘크리트의 공학적 특성)

  • 성찬용;김성완;민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.48-55
    • /
    • 1994
  • This study was performed to evaluate the engineering properties of the lightweight concrete using surlightweight aggregate foaming agent and high performance agent. The following conclusions were drawn. 1. The unit weight of type A, B and C concrete was 0.912t/m$^3$, 1.592t/m$^3$ and 1.070t/m$^3$, respectively. Specially, the unit weight of type A concrete was decreased 42% than that of the type B concrete. 2. The highest engineering property was measured in the lightweight concrete using high performance agent Also, the ratio of tensile and bending strength to compresive streng-th of the lightweight concrete was higher than that of the normal cement concrete. 3. The dynamic modulus of elasticity of the lightweight concrete was in the range of 2.86 x 10 5~9.86 x 10 5 kg/cm$^2$ which was approximately 300% than that of the normal cement concrete. 4. The ultrasonic pulse velocity of the lightweight concrete was in the range 2047~3394 n/sec, which was smaller than that of the normal cement concrete.

  • PDF

A Study of Engineering Properties and Deformation Behavior of Weathered Rock Mass (풍화 암반의 공학적 특성 및 변형거동에 관한 연구)

  • 강추원;박현식;김수로
    • Explosives and Blasting
    • /
    • v.22 no.2
    • /
    • pp.33-43
    • /
    • 2004
  • The six grades weathering system is normally used in weathered rock classification. In this study. fresh and weathered rock block of grade I to V were sampled in Jang-soo ana but samples of the grade VI was omitted from this study. The variation quantities of chemical weathering indices with weathering degree are smaller than those of physical and mechanical properties. Increase of Weathering degree is well indicated by physical and mechanical properties such as strength, hardness, ultrasonic velocity and slake durability result. Especially, absorption and porosity ratio is a good indicator. As weathering proceeds. a number of the cracks affect the rock deformation. Therefore, stress-strain curves of weathered rocks in unconfined state are quite different from ones of fresh rocks.

Performance of concrete modified with SCBA and GGBFS subjected to elevated temperature

  • Palaskar, Satish Muralidhar;Vesmawala, Gaurang R.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.203-218
    • /
    • 2020
  • This research paper presents the outcomes in terms of mechanical and microstructural characteristics of binary and ternary concrete when exposed to elevated temperature. Three parameter were taken into account, (a) elevated temperature (i.e., 200, 400, 600 and 800℃) (b) binary concrete with cementitious material sugarcane bagasse ash (SCBA) and ground granulated blast furnace slag (GGBFS) replacement percentage (i.e., 0, 15, 20, 25 and 30%) and (c) ternary concrete with cementitious material SCBA and GGBFS replacement percentage (i.e., 0, 15, 20, 25 and 30%). A total of 285 standard cube specimens (150 mm × 150 mm × 150 mm) containing Ordinary Portland Cement (OPC), SCBA, and GGBFS were made. These specimens then exposed to several elevated temperatures for 2 h, afterword is allowed to cool at room temperature. The following basic physical, mechanical, and microstructural characteristics were then determined and discussed. (a) mass loss ratio, (b) ultrasonic pulse velocity (UPV) (c) physical behavior, (d) compressive strength, and (e) field emission scanning electron microscope (FESEM). It was found that compressive strength increases up to 400℃; beyond this temperature, it decreases. UPV value and massloss decrease with increase in temperature as well as the change in color and crack were observed at a higher temperature.

Engineering Properties of No-fines Concrete (No-fines Concrete의 공학적 특성)

  • 민정기;성찬용;김성완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.73-80
    • /
    • 1995
  • This study was carried out to investigate the engineering properties of no-fines con- crete, consisting only of coarse aggregate, cement and water. The used coarse aggregates were two, one is natural coarse aggregate grading 4.75~ lOmm, the other is synthetic lightweight coarse aggregate grading 3~8mm. The results of this study are summarized as follows; 1. The W/C ratio of each type was increased with increase of additional amount of coarse aggregate. 2. The unit weight of used ndtural coarse aggregate was shown 1.762~2.184g/cm$^3$, and synthetic lightweight coarse aggregate was shown 0.756 ~ 1 .348g/cm$^3$. 3. The ahsorption rate of used natural coarse aggregate was shown 8.4 ~ 9.4 %, and synthetic lightweight coarse aggregate was shown 17.0~42.4%. 4. The compressive, tensile and hending strength was decreased with increase of coarse aggregate, respectively. The compressive strength of natural coarse aggregate 1:3 was shown 309kg/cm$^2$. 5. The ultrasonic pulse velocity and dynamic medulus of elasticity of each type was de- creased with increase coarse aggregate, respectively. Also, the decreasing rate of the natural aggregate was larger than that of the synthetic lightweight coarse ag- gregate.

  • PDF

Prediction of Hybrid fibre-added concrete strength using artificial neural networks

  • Demir, Ali
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.503-514
    • /
    • 2015
  • Fibre-added concretes are frequently used in large site applications such as slab and airports as well as in bearing system elements or prefabricated elements. It is very difficult to determine the mechanical properties of the fibre-added concretes by experimental methods in situ. The purpose of this study is to develop an artificial neural network (ANN) model in order to predict the compressive and bending strengths of hybrid fibre-added and non-added concretes. The strengths have been predicted by means of the data that has been obtained from destructive (DT) and non-destructive tests (NDT) on the samples. NDTs are ultrasonic pulse velocity (UPV) and Rebound Hammer Tests (RH). 105 pieces of cylinder samples with a dimension of $150{\times}300mm$, 105 pieces of bending samples with a dimension of $100{\times}100{\times}400mm$ have been manufactured. The first set has been manufactured without fibre addition, the second set with the addition of %0.5 polypropylene and %0.5 steel fibre in terms of volume, and the third set with the addition of %0.5 polypropylene, %1 steel fibre. The water/cement (w/c) ratio of samples parametrically varies between 0.3-0.9. The experimentally measured compressive and bending strengths have been compared with predicted results by use of ANN method.

Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks

  • Blumauer, Urska;Hozjan, Tomaz;Trtnik, Gregor
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.247-256
    • /
    • 2020
  • In this paper the possibility of using different regression models to predict the mechanical properties of limestone concrete after exposure to high temperatures, based on the results of non-destructive techniques, that could be easily used in-situ, is discussed. Extensive experimental work was carried out on limestone concrete mixtures, that differed in the water to cement (w/c) ratio, the type of cement and the quantity of superplasticizer added. After standard curing, the specimens were exposed to various high temperature levels, i.e., 200℃, 400℃, 600℃ or 800℃. Before heating, the reference mechanical properties of the concrete were determined at ambient temperature. After the heating process, the specimens were cooled naturally to ambient temperature and tested using non-destructive techniques. Among the mechanical properties of the specimens after heating, known also as the residual mechanical properties, the residual modulus of elasticity, compressive and flexural strengths were determined. The results show that residual modulus of elasticity, compressive and flexural strengths can be reliably predicted using an artificial neural network approach based on ultrasonic pulse velocity, residual surface strength, some mixture parameters and maximal temperature reached in concrete during heating.

Effects of waste marble and glass powders on concrete properties and performance

  • Nouraldin Abunassar;Tulin Akcaoglu
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.211-220
    • /
    • 2024
  • Concrete, consisting mainly of cement, water and aggregates; is the most used construction material all over the world. Cement manufacturing industry is one of the carbon dioxide producing sources that contributes to global warming. Therefore, in the last few years, there is a growing interest in using waste materials and by-products as cement replacement materials. Using these kinds of materials as a part of cement replacement reduces the air pollution, cost and also enhances some properties of concretes. In the present work, marble dust (MD) was examined as a partial cement replacement material with seven proportions as 0%, 10%, 20%, 30%, 40%, 50%, 60% and glass powder (GP) was used as an additive, 8% by cement weight, in a 0.55 water-binder ratio concrete. In order to evaluate their effects; workability, strength (compressive, flexural and split tensile), alkalinity, sulphate resistance and ultrasonic pulse velocity tests were performed. Experimental results indicated that with MD replacement and GP addition; there is a loss in the workability but improvement in mechanical properties. With 10% replacement of MD compressive, flexural and tensile strengths increased by 10.7%, 6.2% and 5.3% respectively. Moreover, up to 30% replacement of MD reasonable strength values were obtained.

Prediction Model for Autogenous Shrinkage of High Strength Fly Ash Concrete (고강도 플라이 애쉬 콘크리트의 자기수축 예측 모델)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.134-142
    • /
    • 2003
  • Autogenous shrinkage, a significant contributor of early-age cracking of high strength concrete (HSC), must be avoided or minimized from an engineering point of view. Therefore, it is necessary to study how to reduce and to predict autogenous shrinkage with respect to tile control of early-age cracking. In this study, autogenous shrinkage of HSC with various water-binder ratio (W/B) ranging from 0.50 to 0.27 and fly ash content of 0, 10, 20, and 30% were investigated. Based on the test results, thereafter, a prediction model for autogenous shrinkage was proposed. Test results show that autogenous shrinkage increased and more rapidly developed with decreasing the W/B. Also, the higher fly ash contents, the smaller autogenous shrinkage. In particular, even if much autogenous shrinkage occurs at very early-ages, stress may not be developed while the stiffness of concrete is low. In order to consider the change of concrete stiffness, the transition time referred as stiffening threshold, was obtained by monitoring of ultrasonic pulse velocity evolution and considered in the autogenous shrinkage model. From a practical point of view, the proposed model can be effectively used to predict autogenous shrinkage and to estimate stress induced by autogenous shrinkage.