• 제목/요약/키워드: ultrasonic sensor

검색결과 836건 처리시간 0.033초

초음파센서를 이용한 자율 주행 로봇의 경로 계획용 지도작성 (Map building for path planning of an autonomous mobile robot using an ultrasonic sensor)

  • 이신제;오영선;김학일;김춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.900-903
    • /
    • 1996
  • The objective of this paper is to make the weighted graph map for path planning using the ultrasonic sensor measurements that are acquired when an A.M.R (autonomous mobile robot) explores the unknown circumstance. First, The A.M.R navigates on unknown space with wall-following and gathers the sensor data from the environments. After this, we constructs the occupancy grid map by interpreting the gathered sensor data to occupancy probability. For the path planning of roadmap method, the weighted graph map is extracted from the occupancy grid map using morphological image processing and thinning algorithm. This methods is implemented on an A.M.R having a ultrasonic sensor.

  • PDF

초음파 센서를 이용한 LED 디밍 시스템조명 설계 (Design of LED Dimming Lighting System using Ultrasonic Sensor)

  • 양우석;김혜명;조영식;박대희
    • 조명전기설비학회논문지
    • /
    • 제29권1호
    • /
    • pp.31-36
    • /
    • 2015
  • In this paper, an LED lighting system that is capable of automatic or maunal dimming control using a ultrasonic sensor and Bluetooth wireless communication technology is presented. The LED lighting system consists of a ultrasonic sensor, microcontroller unit, Bluetooth wireless communication, LED driver, and LED light source. By using the implemented LED lighting system sample, it is shown that the automatic and manual dimming control is realized. By using the ultrasonic sensor, the LED lighting is automatically brighter or dimmer depending on the distance between the sensor and an object. When using a smartphone that includes Bluetooth wireless communication function, one can not only manually control the brightness of the LED lighting from level 1 to 10, but also monitor the distance between the sensor and object on the smartphone.

Development of a Pet Robot Chasing a Moving Person in Outdoor Environment

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Aoshima, Nobuharu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.67-72
    • /
    • 2005
  • In a park or street, we can see many people jogging or walking with their dogs that are chasing their masters. In this study, a pet robot that imitates dog's behavior is developed. The task of robot is to chase a person who is recognized as the master. The physical structure and the sensor system are designed for the task and environment. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a person who is jogging in outdoor environment like a park. A sensor system, which can detect relative position of the master to the robot in highly dynamic and hazardous worlds, is developed. This sensor system consists of a signal transmitter which is held by the master and ultrasonic sensor array which are mounted on the robot. The transmitter emits RF (radio frequency) and ultrasonic signals simultaneously. The ultrasonic sensor array detects the signals and calculates direction and distance between the robot and the transmitter. The developed RF-ultrasonic sensor is evaluated through experiments. A purely reactive behavior-based control architecture is used for the robot. The behavior control performance of the robot is assessed in outdoor and indoor tests.

Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint

  • Li, Xin;Zhang, Yunfeng
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.565-582
    • /
    • 2008
  • This paper presents a feasibility study of flexible piezoelectric paint for use in wide-band low-profile surface-mount or embeddable ultrasonic sensor for in situ structural health monitoring. Piezoelectric paint is a piezoelectric composite with 0-3 connectivity. Because of its ease of application, piezoelectric paint can be readily fabricated into sensing element with complex pattern. This study examines the characteristics of piezoelectric paint in acoustic emission signal and ultrasonic guided wave sensing. A series of ultrasonic tests including pitch catch and pencil break tests were performed to validate the ultrasonic wave sensing capability of piezoelectric paint. The results of finite element simulation of ultrasonic wave propagation, and acoustic emission generated by a pencil lead break on an aluminum plate are also presented in this paper along with corresponding experimental data. Based on the preliminary experimental results, the piezoelectric paint appears to offer a promising sensing material for use in real-time monitoring of crack initiation and propagation in both metallic and composite structures.

A development of map building sensor system for mobile robot using low cost photo sensor

  • Hyun, Woong-Keun
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.281-285
    • /
    • 2009
  • Mobile robot has various sensors for describing the external world. The ultrasonic sensor widely applied to the most mobile robot to detect the obstacle and environment owing to low cost, its easy to use. However, ultrasonic sensor has major problems: the uncertainty information of sensor, false readings caused by specular reflection, multi path effect, low angular resolution and sensitivity to changes in temperature and humidity. This paper describes a sensor system for map building of mobile robot. It was made of low cost PSD (Position Sensitive Detector) sensor array and high speed RISC MPU. PSD sensor is cost effective and light weighting but its output signal has many noises. We propose heuristic S/W filter to effectively remove these noises. The developed map building sensor system was equipped on a mobile robot and was compared with ultrasonic sensor through field test.

코드를 이용한 초음파 동시구동 시스템 (Simultaneous Driving System of Ultrasonic Sensors Using Codes)

  • 김춘승;최병준;이상룡;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

초음파 센서를 이용한 실내 환경 실시간 계측 모델 (Real-time Measurement Model of Indoor Environment Using Ultrasonic Sensor)

  • 이만희;조황
    • 한국통신학회논문지
    • /
    • 제30권6A호
    • /
    • pp.481-487
    • /
    • 2005
  • 이동형 로봇의 자율주행 능력을 높이기 위해서는 미리 알려진 주위 환경 특징들을 효과적으로 인식하는 방법의 개발이 매우 중요하다. 본 논문은 실내 로봇 주행 환경 내에서 위치 및 방향 정보가 미리 알려져 있는 벽과 모퉁이 같은 환경 특징들을 초음파 센서를 이용하여 실시간적으로 인식하는 방법을 제안한다. 초음파 센서는 한 개의 초음파 송신기와 이를 중심으로 적절한 거리에 대칭적으로 위치된 두 개의 초음파 수신기로 구성된다. 초음파 센서로부터 얻어진 정보는 확장 칼만 필터를 이용하여 기존 방법과는 달리 실시간적으로 처리됨으로써 인식된 환경 특징들에 대해 상대적으로 로봇의 위치 및 방향의 보정을 가능하게 한다.

Ultrasonic wireless sensor development for online fatigue crack detection and failure warning

  • Yang, Suyoung;Jung, Jinhwan;Liu, Peipei;Lim, Hyung Jin;Yi, Yung;Sohn, Hoon;Bae, In-hwan
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.407-416
    • /
    • 2019
  • This paper develops a wireless sensor for online fatigue crack detection and failure warning based on crack-induced nonlinear ultrasonic modulation. The wireless sensor consists of packaged piezoelectric (PZT) module, an excitation/sensing module, a data acquisition/processing module, a wireless communication module, and a power supply module. The packaged PZT and the excitation/sensing module generate ultrasonic waves on a structure and capture the response. Based on nonlinear ultrasonic modulation created by a crack, the data acquisition/processing module periodically performs fatigue crack diagnosis and provides failure warning if a component failure is imminent. The outcomes are transmitted to a base through the wireless communication module where two-levels duty cycling media access control (MAC) is implemented. The uniqueness of the paper lies in that 1) the proposed wireless sensor is developed specifically for online fatigue crack detection and failure warning, 2) failure warning as well as crack diagnosis are provided based on crack-induced nonlinear ultrasonic modulation, 3) event-driven operation of the sensor, considering rare extreme events such as earthquakes, is made possible with a power minimization strategy, and 4) the applicability of the wireless sensor to steel welded members is examined through field and laboratory tests. A fatigue crack on a steel welded specimen was successfully detected when the overall width of the crack was around $30{\mu}m$, and a failure warnings were provided when about 97.6% of the remaining useful fatigue lives were reached. Four wireless sensors were deployed on Yeongjong Grand Bridge in Souht Korea. The wireless sensor consumed 282.95 J for 3 weeks, and the processed results on the sensor were transmitted up to 20 m with over 90% success rate.

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발 (Development of experimental water level measuring device using an Arduino and an ultrasonic sensor)

  • 유문성
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.143-147
    • /
    • 2018
  • 수위는 하수장, 정수장, 하천, 댐, 공장의 저장탱크 등 다양한 분야에서 측정된다. 수위측정을 위한 초음파 기기가 판매중이나 산업용으로 실험에서 사용하기는 가격이 너무 비싸다. 전자 기술의 급속한 진보로 인해 다양한 종류의 측정, 모니터링 및 제어 기능이 저렴하게 구축하는 것이 가능해졌다. 저렴한 가격으로 초음파 수위 측정시스템을 만들기 위하여 본 연구가 시작되었다. 실험용으로 사용하기 위하여 아두이노, 초음파 센서 및 온도 센서로 시스템을 구성하였다. 초음파 센서는 센서에서 수위 표면까지의 시간을 측정한다. 온도 센서는 대기 온도를 측정하며 온도 변화로 인한 소리의 속도를 보정하여 초음파 거리 측정의 정확성을 높인다. 아두이노는 측정 전반을 관리하고 수위를 계산한다. 시스템의 모든 구성 요소는 장치거치대에 조립되었다. 제안된 시스템을 가지고 실험한 결과 수위가 실측치와 매우 가까웠다. 이 시스템은 또한 저렴하며 설치 및 유지하기가 쉬워 실험용으로 적절하다.