• Title/Summary/Keyword: ultrasonic pulse

Search Result 521, Processing Time 0.026 seconds

Estimation of Compressive Strength of Concrete with Granitic Aggregates : Rebound hammer and Ultrasonic Methods (화강암 골재를 사용한 콘크리트의 비파괴 시험에 의한 강도평가)

  • 김현우;이종태;윤기원;김병극;김무한;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.651-654
    • /
    • 1999
  • It is required that the compressive strength of concrete should be estimated accurately from the view point of efficient quality control and maintenance of buildings. In this paper, the equations to estimate the compressive strength of concrete using granite aggregates were suggested for both rebound hammer method and ultrasonic pulse velocity method. The results were compared with those for different age or curing condition. The rebound numbers for concrete cured in air were larger than for concrete cured in water. The difference between rebound numbers for concrete cured in water and in air was larger than for concrete cured in water. The difference between rebound numbers for concrete cured in water and in air was larger when water cement ratio was high. Also, with the increase of age, the velocity of ultrasonic pulse for concrete cured in air was measured larger when compared with that in water.

  • PDF

Generation of Thermoelastic Waves by Irradiating a Metal Slab with a Line-Focused Laser Pulse

  • Yoo, Jae-Gwon;Baik, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.181-189
    • /
    • 2006
  • A 2D finite-element numerical simulation has been developed to investigate the generation of ultrasonic waves in a homogeneous isotropic elastic slab under a line-focused laser irradiation. Discussing the physical processes involved in the thermoelastic phenomena, we describe a model for the pulsed laser generation of ultrasound in a metal slab. Addressing an analytic method, on the basis of an integral transform technique, for obtaining the solutions of the elastodynamic equation, we outline a finite element method for a numerical simulation of an ultrasonic wave propagation. We present the numerical results for the displacements and the stresses generated by a line-focused laser pulse on the surface of a stainless steel slab.

Analysis of an Error Accompanying Measured Surface Crack Depth of Concrete Using Ultrasonic Pulse Velocity Method (초음파법에 의한 콘크리트 표면 균열 깊이의 측정오차 분석에 관한 연구)

  • 박석균;최욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.175-180
    • /
    • 2003
  • Ultrasonic pulse velocity method is applied many times for measuring surface crack depth of concrete in case of diagnosis of concrete structures. By the way, this method has an error accompanying measured surface crack depth of concrete because there are many uncertainty factors. So, it is necessary to study for an error of this method affected by these uncertainty factors. Two error factors(uncertainty factors) are tested and analyzed in this study. One is for an error according to measuring the propagation time of ultrasonic wave and the arrangement distance of transducers. Another is for an error according to positioning the transducer as a distance to surface crack from the transducer.

  • PDF

A Study on the Improvement in Performance of Ultrasonic Pulsed Doppler Velocimeter (초음파 펄스 도플러 속도계의 성능 개선에 관한 연구)

  • 이은방;이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.85-95
    • /
    • 1996
  • In the velocimeter, the ultrasonic pulse signal is used for measuring the profile velocity of moving targets distributed in space because of the merits of its high distance resolution and harmless affect to the human body. The velocity reading in conventional ultrasonic pulsed velocimeter depends on the wave pattern reflecting the spatial distribution of scatters and includes observational error due to the signal processing of analyzing pulse signal. In this paper, we evaluate an influence of the received waveform of pulsed signal on the velocity information by setting a model. Subsequently, in order to improve the distance resolution and to obtain precise velocity information without the influence of the spatial distribution of scatterers, we propose a new method for the analysis of Doppler pulsed signal, in which the pulsed signal is transformed into a phase function with local data. Finally, it is confirmed that the performance of the velocimeter is more improved in the proposed method than in the conventional one.

  • PDF

Characteristics of Ultrasonic Signals by Partial Discharge Types (변압기내 부분방전의 종류에 따른 초음파 신호 특성)

  • Park, Hyun-Soo;Park, Jae-Do;Chung, Young-Ki;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1897-1899
    • /
    • 2000
  • This paper describes the frequency characteristics and the number of pulse of ultrasonic signals due to partial discharge occurred at each electrode. The defects which could occur in a transformer were simulated by using needle-plane electrode, IEC(b) electrode and void electrode. As a result, the dominant frequency of ultrasonic signals generated by corona in oil and partial discharge in void was hardly changed regardless with the applied voltage, but in case of surface discharge in oil, its dominant frequency moved to low frequency with the applied voltage. The increasing rate of pulse number per second was high in order of the surface discharge in oil, the partial discharge in void, the corona in oil.

  • PDF

A Study on the Pore Structure of Recycled Aggregates Made of EPS Waste and Insulation Performance of Lightweight Concrete (폐 EPS 재생골재의 공극구조와 경량골재큰크리트의 단열성능에 관한 연구)

  • 탁현철;정민수;안재철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.91-96
    • /
    • 2002
  • This study is to investigate the insulation performance of lightweight concrete using recycled lightweight aggregate, to develop lightweight concrete products which have an excellence on the insulation performance are satisfied with properties of building materials. As a result of this study, recycled EPS aggregate is considered to have an independent pores which is closed by dense partitions. So, it is showed that the insulation performance of lightweight concrete using recycled EPS aggregate are excellent. Especially, in the case of lightweight concrete under conditions of replacement ratio over 100%, it is considered that insulation performance is very excellent as thermal conductivity is showed about 0.2kcal/mh$^{\circ}C$. According to considering the relation between ultrasonic pulse velocity, unit weight and thermal conductivity through the graph, the result of relation between ultrasonic pulse velocity, unit weight and thermal conductivity on the graph expressed their high interaction shown as direct proportion on the graph. So that it is possible to extract the insulation performance of lightweight concrete using recycled EPS aggregate by ultrasonic pulse velocity and unit weight.

  • PDF

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

3 Dimensional Nondestructive Inspection of Cavities Inner Concrete by Ultrasonic Pulse Velocity Method (초음파속도법에 의한 콘크리트 내부공동의 3차원 비파괴검사)

  • Park, Seok-Kyun;Lee, Won-Hong;Heo, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.165-168
    • /
    • 2008
  • This study performed the 3-dimensional inspection analysis for cavitation by using the ultrasonic pulse velocity method to detect detailed various cavitations in a concrete test material. The internal-void are made of non-void test material and two types of which a regular square type and a rectangle type that produced through the 3-dimensional cavitation to put into a $500{\ast}500{\ast}500mm$ sized non-reinforced concrete test material. The tomography method for the ultrasonic pulse velocity method was used for the non-destructive test. As a result, this study has found that it is possible to visualize the cavitation as an image, and to analyze the internal-void in detail by the non-destructive method.

  • PDF

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

Correlation of rebound hammer and ultrasonic pulse velocity methods for instant and additive-enhanced concrete

  • Yudhistira J.U. Mangasi;Nadhifah K. Kirana;Jessica Sjah;Nuraziz Handika;Eric Vincens
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • This study aims to determine the characteristics of concrete as identified by Rebound Hammer and Ultrasonic Pulse Velocity (UPV) tests, focusing particularly on their efficacy in estimating compressive strength of concrete material. The study involved three concrete samples designed to achieve a target strength of 29 MPa, comprising normal concrete, instant concrete, and concrete with additives. These were cast into cube specimens measuring 150×150×150 mm. Compressive strength values were determined through both destructive and non-destructive testing on the cubic specimens. As a result, the non-destructive methods yielded varying outcomes for each correlation approach, influenced by the differing constituent materials in the tested concretes. However, normal concrete consistently showed the most reliable correlation, followed by concrete with additives, and lastly, instant concrete. The study found that combining Rebound Hammer and UPV tests enhances the prediction accuracy of compressive strength of concrete. This synergy was quantified through multivariate regression, considering UPV, rebound number, and actual compressive strength. The findings also suggest a more significant influence of the Rebound Hammer measurements on predicting compressive strength for BN and BA, whereas UPV and RN had a similar impact on predicting BI compressive strength.