• Title/Summary/Keyword: ultrasonic phased array

Search Result 67, Processing Time 0.023 seconds

Design and Fabrication of Linear-Array Ultrasonic Transducer Using KLM and FEM Simulation for Non-Destructive Testing (KLM 및 FEM 시뮬레이션을 이용한 비파괴검사용 선형배열 초음파 탐촉자의 설계 및 제작)

  • Park, Chan-Yuk;Sung, Jin-Ho;Jeong, Jong-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 MHz and the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

Image Enhancement for Sub-Harmonic Phased Array by Removing Surface Wave Interference with Spatial Frequency Filter

  • Park, Choon-Su;Kim, Jun-Woo;Cho, Seung Hyun;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • Closed cracks are difficult to detect using conventional ultrasonic testing because most incident ultrasound passes completely through these cracks. Nonlinear ultrasound inspection using sub-harmonic frequencies a promising method for detecting closed cracks. To implement this method, a sub-harmonic phased array (PA) is proposed to visualize the length of closed cracks in solids. A sub-harmonic PA generally consists of a single transmitter and an array receiver, which detects sub-harmonic waves generated from closed cracks. The PA images are obtained using the total focusing method (TFM), which (with a transmitter and receiving array) employs a full matrix in the observation region to achieve fine image resolution. In particular, the receiving signals are measured using a laser Doppler vibrometer (LDV) to collect PA images for both fundamental and sub-harmonic frequencies. Oblique incidence, which is used to boost sub-harmonic generation, inevitably produces various surface waves that contaminate the signals measured in the receiving transducer. Surface wave interference often degrades PA images severely, and it becomes difficult to read the closed crack's position from the images. Various methods to prevent or eliminate this interference are possible. In particular, enhancing images with signal processing could be a highly cost-effective method. Because periodic patterns distributed in a PA image are the most frequent interference induced by surface waves, spatial frequency filtering is applicable for removing these waves. Experiments clearly demonstrate that the spatial frequency filter improves PA images.

Nondestructive Inspection of Steel Structures Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 강구조물의 비파괴 탐상)

  • Shin, Hyeon-Jae;Song, Sung-Jin;Jang, You-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • A phased array ultrasonic nondestructive inspection system is being developed to obtain images of the interior of steel structures by modifying a medical ultrasound imaging system. The medical system consists of 64 individual transceiver channels that can drive 128 array elements. Several modifications of the system were required mainly due to the change of sound speed. It was necessary to fabricate array transducers for steel structure and to obtain A-scan signal that is necessary for the nondestructive testing. Boundary diffraction wave model was used for the prediction of radiation beam field from array transducers, which provided guidelines to design array transducers. And a RF data acquisition board was fabricated for the A-scan signal acquisition along a selected un line within an image. For the proper beam forming in the transmission and reception for steel structure, delay time was controlled. To demonstrate the performance of the developed system and fabricated transducers, images of artificial specimens and A-scan signals for selected scan lines were obtained in a real time fashion.

  • PDF

Study for Non-Destructive Testing of Polyethylene Electrofusion Joints - Ultrasonic Imaging test (폴리에틸렌 배관의 전기융착부 비파괴검사기술에 관한 연구)

  • Kil Seong Hee;Kwon Jeong Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.31-36
    • /
    • 2004
  • Electrofusion(EF) joints have been widely used as they are easy to fuse and suitable for high-quality joints for polyethylene(PE) pipes. This paper studies the cause of defects and classifies 5 types of defects. The defect detection technique for electrofusion joints of polyethylene piping is utilized by the ultrasonic phased array technique to obtain ultrasonic images of electrofusion joints. Test sample joints have been designed and fabricated using artificial defects which were made using paper. Finally, we studied the condition of electrofusion in the field and analyzed the main causes of defects. And we classified the defect types as local lack of fusion, sand inclusion, voids or air inclusion, short stab, excess penetration or excess bead.

  • PDF

PAUT-based defect detection method for submarine pressure hulls

  • Jung, Min-jae;Park, Byeong-cheol;Bae, Jeong-hoon;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.153-169
    • /
    • 2018
  • A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT) is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT) to detect surface defects and Ultrasonic Testing (UT) and Radiography Testing (RT) to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT) method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size.

Thermal Dispersion Method for a Medical Ultrasonic Phased Array Transducer (의료용 초음파 위상배열 트랜스듀서의 열 분산 방안)

  • Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • When the driving voltage of an ultrasound transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer that can cause patient's skin burn and degradation of transducer performance. Hence, in this paper, a method to disperse the heat of the transducer has been studied. The phased array transducer having 3 MHz center frequency and 32 channels was selected for analyses of the thermal dispersion. First, mechanism of the heat generation was investigated in relation to the transducer operation through theoretical analysis, and material damping and sound pressure amplitude were confirmed to be influential on the heat generation. Further, we investigated the effects of the properties of the materials constituting the transducer on the thermal dispersion through finite element analysis. Based on the analysis results, we determined the thermal properties of the constituent materials that could facilitate the thermal dispersion inside the transducer. The determined thermal properties were applied to the finite element model, and the results showed that the maximum temperature at an acoustic lens contacting with a patient was decreased to 51 % of its initial value.

Non-Destructive Testing of Damaged Thermoplastic Pipes Electrofusion Joints Using Phased Array Ultrasonic (위상배열초음파를 이용한 손상된 열가소성 플라스틱배관 전기융착부 비파괴검사)

  • Kil, Seong-Hee;Kim, Byung-Duk;Kwon, Jeong-Rock;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.64-68
    • /
    • 2013
  • Non destructive testing(NDT) methods of electrofusion(EF) joints of thermoplastics pipes are required for fusion joint safety and for the long term reliability of a pipe system. Electrofusion joints, which are joined at the proper fusion process and procedures, may encounter defects due to the difference of ovality between pipes and coupling, improper fusion process or porosity result from electrofusion joining. These defects can cause the failure of pipeline and by extension, they can be caused the limit to expand the use of plastics pipes. This paper studies inspection results using ultrasonic imaging method for damaged polyethylene electrofusion joints. Gas was leaking from 250mm diameter polyethylene electrofusion joints at February 2004 which was electrofused at December 1994 and operation pressure was 2.45kPa. First, surface inspection was conducted and then in order to find the types of defects examination using ultrasonic imaging method was performed. Lack of fusion and inappropriate inserting for polyethylene pipes into electrofusion coupling were found and causes of the gas leak were judged that misalignment and insert defect. Cutting inspection was performed and each inspection results were compared to. Results of ultrasonic imaging method and cutting inspection were the same.

Realtime Identification of the Propagation Direction of Received Echoes in Long-Range Ultrasonic Testing (원거리 초음파검사에서 수신에코 진행방향의 실시간 식별)

  • Choi, Myoung Seon;Heo, Won Nyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.69-72
    • /
    • 2013
  • In long-range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one.

A Reduction of Grating Lobe By Using the Multi-element Receive Synthetic Focusing In Ultrasonic Image (초음파 영상에서 Multi-element Receive Synthetic Focusing을 이용한 그레이팅 로브 감축)

  • Lee, J.S.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.559-562
    • /
    • 1997
  • In this paper, we propose the method that reduce the grating lobe in the ultrasound synthetic focusing images. synthetic focusing images have more larger and closer grating lobe than conventional phased array images and more lower signal to noise ratio. so, we represent the method that reduce the grating lobe by using multi element receive focusing. experimental results are showed that the proposed multi element receiving method reduce the grating lobe and increase the signal to noise ratio.

  • PDF