• 제목/요약/키워드: ultrafine particle (UFP)

검색결과 5건 처리시간 0.018초

한국을 포함한 세계 도심지역에서 관측된 나노미세먼지(UFP)의 특성: 발생원, 시·공간적 분포, 건강에 미치는 영향을 중심으로 (Characteristics of Ultrafine Particles in Urban Areas Observed Worldwide and in Korea: Sources and Emissions, Spatial and Temporal Distributions, and Health Effects)

  • 최원식;김재진
    • 대기
    • /
    • 제28권3호
    • /
    • pp.337-355
    • /
    • 2018
  • Ultrafine particles (< 100 nm in diameter, UFP) are known to be more toxic per unit mass than larger particles and contribute to more than 90% in particle number concentrations in urbanized cities but much less in mass. The major sources of UFP are vehicle emissions in urban areas. Due to their tiny size (the sizes of UFP from vehicle emissions range from 10 to 60 nm depending on engine and fuel types), inhaled UFP can reach the deepest area of respiratory track (e.g., pulmonary alveoli) as well as all of the body via lymph and blood circulation causing various adverse health effects. This article reviews the sources and emission factors of UFP, temporal and spatial distributions in urban areas and their health effects reported by toxicological and epidemiological studies. We also compared the levels of UFP concentrations measured in other countries with those in Korean cities to evaluate the public exposure to UFP in Korea. Ultimately, we expect this study can contribute to developing the risk assessment techniques for public exposure to UFP in the urbanized cities in Korea.

서울대공원 코끼리 열차 특성에 따른 탑승자의 초극미세입자(Ultrafine Particles) 노출 (Exposures of Ultrafine Particles for Passengers of Elephant Vehicle in the Seoul Grand Park)

  • 주송이;황지희;함승헌;이기영
    • 한국환경보건학회지
    • /
    • 제38권5호
    • /
    • pp.393-397
    • /
    • 2012
  • Objectives: The objectives of this study were to measure passengers' exposure to ultrafine particles (UFP) and to determine effects of fuel, operating condition and position of seat. Method: UFP exposures in front and back seats of the Elephant vehicle in Seoul Grand Park were simultaneously measured by a condensation particle counter (P-Trak model 8525, TSI). The measurements were conducted 7 times with diesel-powered vehicle and 3 times with electricity vehicle in one day. The vehicle stopped at 3 locations along with 2.2 km of driving route. Results: UFP concentration in diesel-powered vehicle was significantly higher than electricity vehicle. At front seat of diesel-powered vehicle, average UFP exposure during stopping was significantly higher than during moving. When diesel-powered vehicle moved, UFP exposure in back seat was significantly higher than in front seat. Conclusions: Passengers in the diesel-powered Elephant vehicle could be exposed to high level of UFP. The UFP exposure was associated with operation condition and position of seat.

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권4호
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.

서울시 백화점 내 조리지역과 비조리지역의 입자상 물질 (Ultrafine Particles, PM2.5, PM10) 노출 (Exposures to Ultrafine Particles, PM2.5 and PM10 in Cooking and Non-Cooking Areas of Department Stores in Seoul)

  • 조혜리;구슬기;김정훈;김샛별;이기영
    • 한국환경보건학회지
    • /
    • 제39권2호
    • /
    • pp.144-150
    • /
    • 2013
  • Objectives: Cooking activity in indoor environments can generate particulate matter. The objective of this study was to determine the concentrations of ultrafine particles (UFP), $PM_{2.5}$, and $PM_{10}$ in cooking and non-cooking areas of major department stores in Seoul. Methods: Eighteen department stores in Seoul, Korea were measured for concentrations of particulate matter. Using real-time monitors, concentrations of UFP, $PM_{2.5}$ and $PM_{10}$ were simultaneously measured in cooking and non-cooking areas on the floor with a food court and a non-cooking floor. Results: The concentrations of UFP, $PM_{2.5}$ and $PM_{10}$ were significantly higher in cooking areas than in noncooking areas and non-cooking floors (p<0.05). UFP and $PM_{2.5}$ were significantly correlated in cooking areas and non-cooking areas but not in non-cooking floors. $PM_{2.5}$ were consisted of approximately 81% in $PM_{10}$ and highly correlated with $PM_{10}$ in all places. Conclusion: A higher correlation between UFP and $PM_{2.5}$ was shown on cooking floor than on non-cooking floor in department stores. High levels of fine particles were caused by cooking activities at food courts. The further management of PM is needed to improve the indoor PM levels at food courts in department stores.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권2호
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.