• Title/Summary/Keyword: ultrafast

Search Result 157, Processing Time 0.023 seconds

Dependence of Mode Locked Yb-doped Fiber Laser Output on the Size of the Beam Incident upon a Semiconductor Saturable Absorber Mirror (반도체 포화 흡수체 거울에 입사되는 광의 크기에 따른 모드 잠금된 Yb 첨가된 광섬유 레이저 출력 특성)

  • Moon, Dong Joon;Kim, Myung Jin;Ahan, Cheol Yong;Kim, Nam Seong;Kim, Hyun Su
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.3
    • /
    • pp.103-107
    • /
    • 2012
  • We investigate the dependence of the output of a mode locked Yb-doped fiber laser on incident intra-cavity intensity on a semiconductor saturable absorber mirror (SESAM). To vary the incident intra-cavity intensity, we change the beam spot size on a SESAM by varying the focal length of a lens installed in the front of the SESAM.

Vector Network Analysis Using a One-Path, Frequency-Multiplied Photonic Link

  • Lee, Dong-Joon;Kwon, Jae-Yong;Kang, Jin-Seob;Whitaker, John F.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.282-289
    • /
    • 2010
  • A simplified, practical vector network analyzer (VNA) that uses mature radio-over-fiber technology has been designed and demonstrated. The measurement concept allows the full S-parameters of a microwave device (or antenna) to be obtained while minimizing the detrimental effects of electrical cables, which are replaced with a photonic link. A variety of high-frequency light modulation schemes with frequency sweeping capabilities are presented to realize a one-path (single, forward), frequency-multiplied optical link for VNA applications. Using the photonic one-path link, full two-port S-parameters have been extracted based on five-term error modeling, which has half the error terms compared with the standard duplex configuration. The S-parameters of a microwave filter and antenna measured using frequency-multiplied optical links are found to be in good agreement with those obtained using a conventional VNA.

Detection of Explosive RDX using Parallel Plate Waveguide THz-TDS (평행판 도파관 THz 분광을 이용한 폭발물 RDX 검출)

  • Yoo, Byung Hwa;Chung, Dong Chul;Kang, Seung Beom;Kwak, Min Hwan;Kang, Gwang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1939-1943
    • /
    • 2012
  • In this paper we presented the detection of the explosive material RDX using a parallel plate waveguide (PPWG) THz time domain spectroscopy (TDS). Normally the explosive materials have been characterized through identification of vibrational fingerprint spectra. Until now, most of all THz spectroscopic measurements have been made using pellet samples where disorder effects contribute to line broadening such that individual resonances merge into relatively broad absorption features. In order to avoid such disadvantages we used the technique of PPWG THz-TDS to achieve sensitive characterization of explosive material RDX. The PPWG THz-TDS used in this work well established ultrafast optoelectronic techniques to generate and detect sub-picosecond THz pulses. The explosive material was analyzed as powder layers in $112{\mu}m$ gap of metal PPWG. The thin later mass was estimated to be about $700{\mu}g$. Finally, we showed spectra of explosives from 0.2 to 2.4 THz measured using PPWG THz-TDS.

The Analysis of the effects of the platform screen door on the fire driven flow in The Deeply Underground Subway Station (대심도 지하역사에서의 화재시 플랫폼 스크린 도어에 의한 열, 연기 거동 영향 분석)

  • Jang, Y.J.;Kim, H.B.;Lee, C.H.;Jung, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1984-1989
    • /
    • 2008
  • In this study, fire simulations were performed to analyze the characteristics of the fire driven flow and the effects of the platform screen door on the smoke flow in the station, when the fire occurred in the center of the platform. Soongsil Univ. station (line number 7, 47m in depth underground) was chosen which was the one of the deepest underground subway stations in the Seoul metro, SMRT. The parallel computational method was employed to compute the heat and mass transfer eqn's with 6 CPUs of the linux clustering machine. The fire driven flow was simulated with using FDS code in which LES method was applied. The Heat release rate was 10MW and The Ultrafast model was applied for the growing model of the fire source. The 10,000,000 structured grids were used.

  • PDF

Ultrafast Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxyanthraquinone in Solution

  • Ryu, Jaehyun;Kim, Hyun Woo;Kim, Myung Soo;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.465-469
    • /
    • 2013
  • Proton transfer reaction is one of the most fundamental processes in chemistry and life science. Excited state intramolecular proton transfer (ESIPT) has been studied as a model system of the proton transfer, since it can be conveniently initiated by light. We report ESIPT reaction dynamic of 1-hydroxy-anthraquione (1-HAQ) in solution by highly time-resolved fluorescence. ESIPT time of 1-HAQ is determined to be $45{\pm}10$ fs directly from decay of the reactant fluorescence and rise of the product fluorescence. High time resolution allows observation of the coherent vibrational wave packet motion in the excited state of the reaction product tautomer. The coherently excited vibrational mode involves large displacement of the atoms, which shortens the distance between the proton donor and the acceptor. With the theoretical analysis, we propose that the ESIPT of 1-HAQ proceeds barrierlessly with assistance of the skeletal vibration, which in turn becomes excited coherently by the ESIPT reaction.

Time-resolved Anisotropy Study on the Excited-State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone

  • Choi, Jun-Rye;Jeoung, Sae-Chae;Cho, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1675-1679
    • /
    • 2003
  • The photodynamics of excited-state intramolecular proton transfer reaction of 1-hydroxyanthraquinone (1-HAQ) and 1-deuterioanthraquinone was investigated in toluene with time-resolved emission and femtosecond transient transmittance techniques at room temperature. The temporal profiles of transient transmittance of 1-HAQ could be well described with multi-decaying time constants. The ultrafast time constant within ca. 260 fs reflects the dynamics of proton transfer. The decay component of 2 ps is assigned to an additional proton translocation process induced by the intramolecular vibrational relaxation, whereas the decay component of 18 ps is assigned to the vibrational cooling process, while the long component (200 ps) can be explained in terms of the relaxation from excited-state keto-tautomer to its ground state. Time-resolved anisotropy decay dynamics and isotope effects on the photodynamics reveals that the ESIPT from enol-tautomer to keto-one of 1-HAQ is barrierless reaction and coupled to a vibrational relaxation process.

The characteristics of terahertz electromagnetic pulses by electrical and optical parameters. (전기적 광학적 변화가 테라헤르츠 전자기 펄스의 모양에 미치는 영향)

  • 전태인
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.503-506
    • /
    • 2001
  • When DC voltages from 5 V up to 90 V are applied to a transmitter chip excited by an ultrafast lacer beam, the terahertz electromagnetic pulses and their spectra are changed. The spectrum shifts to the high frequency range when the high DC voltage is applied to the chip. At that time, the signal-to-noise ratio is increased from 250: 1 to 10,000: 1. The spectrum can expand up to 4 THz by optimal realignment of the THz system. Also, two terahertz electromagnetic pulses are generated from a receiver chip when the laser detection beam is reflected to the back side of the chip.

  • PDF

Fast Responding Gas Sensors Using Sb-Doped SnO2 Nanowire Networks (Sb-첨가 SnO2 나노선 네트워크를 이용한 고속응답 가스센서)

  • Kwak, Chang-Hoon;Woo, Hyung-Sik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • The Sb-doped $SnO_2$ nanowire network sensors were prepared by thermal evaporation of the mixtures between tin and antimony powders. Pure $SnO_2$ nanowire networks showed high sensor resistance in air ($99M{\Omega}$), similar gas responses to 4 diffferent gases (5 ppm $C_2H_5OH$, CO, $H_2$, and trimethylamine), and very sluggish recovery speed (90% recovery time > 800 s). In contrast, 2 wt% Sb-doped $SnO_2$ showed the selective detection toward $C_2H_5OH$ and trimethylamine, relatively low resistance ($176k{\Omega}$) for facile measurement, and ultrafast recovery speed (90% recovery times: 6 - 18 s). The change of gas sensing charactersitics by Sb doping was discussed in relation to gas sensing mechanism.

New Science Opportunities with X-Ray Free Electron Laser (X-선 자유전자 레이저를 위한 새로운 과학)

  • Koo, Tae-Yeong
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.231-236
    • /
    • 2011
  • X-ray Free Electron Laser (XFEL) has been known to be a dream X-ray source opening an epoch in X-ray science with the characteristics of femtosecond pulse, perfect transverse coherence, and ultra-high brightness. Here we introduce the XFEL source shortly and report the status of the worldwide XFEL facilities, and then the experimental instrumentations for XFEL are reviewed in their conceptual classification scheme. Scientific examples and applications proposed in the research area of magnetism for XFEL are briefly mentioned. Finally are summarized the facility overview and the scientific proposals for PAL-XFEL project.

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.