• Title/Summary/Keyword: ultra-wide steel box girder

Search Result 1, Processing Time 0.015 seconds

Research on the longitudinal stress distribution in steel box girder with large cantilever

  • HONG, Yu;LI, ShengYu;WU, Yining;XU, Dailing;PU, QianHui
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • There are numerous structural details (Longitudinal beam, web plate, U-ribs and I-ribs) in the top and bottom plates of steel box girders, which have significant influences on the longitudinal stress (normal stress) distribution. Clarifying the influence of these structural details on the normal stress distribution is important. In this paper, the ultra-wide steel box girder with large cantilevers of the Jinhai Bridge in China, which is the widest cable-stayed bridge in the world, has been analyzed. A 1:4.5 scale laboratory model of the steel box girder has been manufactured, and the influence of structural details on the normal stress distribution in the top and bottom plates for four different load cases has been analyzed in detail. Furthermore, a three-dimensional finite element model has been established to further investigate the influence regularity of structural details on the normal stress. The experimental and finite element analysis (FEA) results have shown that different structural details of the top and bottom plates have varying effects on the normal stress distribution. Notably, the U-ribs and I-ribs of the top and bottom plates introduce periodicity to the normal stress distribution. The period of the influence of U-ribs on the normal stress distribution is the sum of the single U-rib width and the U-rib spacing, and that of the influence of I-ribs on the normal stress distribution is equal to the spacing of the I-ribs. Furthermore, the same structural details but located at different positions, will have a different effect on the normal stress distribution.