• Title/Summary/Keyword: ultra-pure water

Search Result 50, Processing Time 0.027 seconds

Electrical Properties of G4-48PyP Dendrimer LB Films complex with Metal Ions (금속이온 착체에 의한 G4-48PyP 덴드리머 LB막의 전기적 특성)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.769-772
    • /
    • 2002
  • Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. And one of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a dendrimer LB films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. We investigated the surface activity of dendrimer films at air-water interface compared with pure dendrimer and its complex with $Fe^{2+}$ ions into subphase. We though that metal ions are contributed to networking or branching reaction between dendrimers. And we expected that it can result in the differences on the electrical properties. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage characteristics of metal dendrimer LB films/metal (MIM) structure.

  • PDF

Quartz Megasonic System for Cleaning Flat Panel Display (평판디스플레이 세정 용 Quartz 메가소닉 시스템)

  • Kim, Hyunse;Lee, Yanglae;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1107-1113
    • /
    • 2014
  • In this article, the megasonic cleaning system for cleaning micro/nano particles from flat panel display (FPD) surfaces was developed. A piezoelectric actuator and a waveguide were designed by finite element method (FEM) analysis. The calculated peak frequency value of the quartz waveguide was 1002 kHz, which agreed well with the measured value of 1003 kHz. The average acoustic pressure of the megasonic cleaning system was 43.1 kPa, which is three times greater than that of the conventional type of 13.9 kPa. Particle removal efficiency (PRE) tests were performed, and the cleaning efficiency of the developed system was proven to be 99%. The power consumption of the developed system was 64% lower than that of the commercial system. These results show that the developed megasonic cleaning system can be an effective solution in particle removing from FPD substrate with higher energy efficiency and lower chemical and ultra pure water (UPW) consumption.

Electrical Properties by Effect of Metal Complex of G4-48PyP Dendritic Macromolcules Thin Films (G4-48PyP 덴드리틱 거대분자 박막의 금속이온 착체에 의한 전기적 특성)

  • Son, J.H.;Jung, S.B.;Kim, B.S.;Park, T.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.16-18
    • /
    • 2002
  • We attempted to fabricate a dendrimer Langmuir-Blodgett(LB) films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. In this study the samples for electrical measurement were fabricated to two types metal complexes with $Pt^{4+}$ and $Fe^{2+}$ ions by LB method. And we have investigated the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure G4-48PyP dendrimer and its complex with metal ions($Pt^{4+}$ and $Fe^{2+}$ ions). In the surface pressure-area($\pi-A$) isotherms of the dendrimers, the stable condensed films formed at the air-water interface and the metal ions effect showed the difference on molecular behavior. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of metal/dendrimer LB films/metal(MIM) structure. In conclusion, it is demonstrated that the metal ion around G4-48PyP dendrimer can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties.

  • PDF

Leaching Behavior of LD Slag

  • Kim, Hyung-Suek;Han, Ki-Hyun;M. S. Oh;Byeon, Tae-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.526-531
    • /
    • 2001
  • LD slag, that is, a by-product of steel making process, has been mainly used as land construction materials. Recently, the seashore application of LD slag was tried in Japan and Korea tut the reaction between LD slag and seawater was not studied yet. We tried to clarify the leaching reaction and/or mechanism of LD slag and the reaction between seawater and LD slag. We tried to apply these results to the decarbonization of seawater for seawater magnesia process. At first, LD slag was milled and classified into 5 grades, that is, (ⅰ)45${\mu}{\textrm}{m}$ under, (ⅱ)0.25~0.5mm (ⅲ)0.5~1mm(ⅳ)1~2mm, (ⅴ)2.36~3.35mm. These slags were leached in the distilled water. In case of 45${\mu}{\textrm}{m}$ under, the pH of the leached solution was over 12. The chemical analysis of leached solution showed that the $Ca^{+}$$^2$was main component and the S $i^{+}$$^4$was very low. On the other hand, the content of S $i^{+}$$^4$in leached solution was decreased with the increase of pH of this solution. The nearly pure calcium solution was made and the ultra high purity MgO could be made with this calcium solution. The leaching behavior of LD slag was different between the fine particle and coarse particle. The calcium was leached by bulk dissolution in the coarse particle and by surface controlled reaction in fine particle. The leaching rate was slow in coarse particle and fast in fine particle. Therefore, the high pH solution, that is, over 12, was obtained in fine particle.cle.e.

  • PDF

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Sample Preparation and Stability of Human Serum and Urine Based on HPLC-DAD for Metabonomics Studies

  • Liu, Yun;Sun, Xiaoming;Di, Duolong;Feng, Yuxiang;Jin, Fengling
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2156-2162
    • /
    • 2012
  • Many literatures focus on the biological relevance and the identification of biomarkers for disease activity assessment while less attention has been paid to the development of standard procedures for sample preparation and storage based on liquid chromatography technique. The influencing factors including protein precipitation, storage temperature, storage time, and reconstitution by ultra pure water were analyzed employing HPLC-DAD. The effects were investigated from five participants over three months by principal components analysis (PCA) and the values of percent changes (PC). The samples with protein precipitation might slow the rate of bacterial enzymatic conversion. After protein precipitation, the average PC of urine samples ($0.136{\pm}0.013$, n = 5) is relatively less than that of the serum samples ($0.173{\pm}0.026$, n = 5) for three months. Minimal effects on metabolic profiles of serum and urine (PC < 0.15) are reasonable for metabolomic studies after protein precipitation and storage at $-20^{\circ}C$ for two months.

가교키토산 복합막을 이용한 에틸렌글리콜/물 혼합액의 투과증발분리

  • 남상용;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.82-83
    • /
    • 1996
  • 키토산 막을 이용한 유기혼합물 중의 물을 효율적으로 분리해내는 투과증발공정은 많은 발전을 거듭해 왔으며, 특히 에탄올중의 물을 효율적으로 탈수하는 것에는 탁월한 성능을 보고한 바 있다. 키토산은 주로 게등의 갑각류의 외피에서 얻을 수 있는 키닌을 주원료로 하는 물질로서 친수성이 뛰어난 막재료뿐만 아니라 생체적 합성이 요구되는 생체재료로도 널리 사용이 되고 있는 물질이다. 에틸렌즐리콜은 석유화학공정에서 생성되는 에틸렌 옥시이드를 원료로 하여 제조가 되고 있는 물질이다. 에틸렌글리콜은 PET의 원료로서 사용이 많이 되고 있으며, 겨울철에는 자동차등의 부동액이나 눈이 많이 내리는 지역에서 효율적으로 눈을 제거하기 위하여 공항의 활주로등에서 주로 사용이 되고 있는 물질이다. 에틸렌글리콜의 제조공정중에서 물을 효과적으로 제거하는 방법으로는 증류법이 있을 수 있으나 에틸렌글리콜의 비점이 물보다 현저히 높기 때문에, 공비혼합물을 생성하지 않는 이 혼합물의 특성과는 무관하게, 투과증발법을 이용할 경우 에너지의 절감이 이루어지게 되기 때문에 매우 효용적이고 추천할만할 공정이다. 또한 활주로의 부동액등으로 사용되는 경우 에틸렌글리콜의 재활용이 이루어질 경우 경비의 절감이나 환경적인 문제의 해결등의 장점이 있어서 물의 분리가 요구되고 있다. 이 경우에는 마찬가지로 에틸렌글리콜과 물의 분리는 일반적인 분리에 비해서 투과증발법이 유용하다고 할 수 있다. 본 실험에서는 키토산 막의 효율적인 응용예로서 기존의 알콜의 탈수와 더불어서 에틸렌글리콜의 탈수를 고찰해보고자 하였다.관리가 간편하며, 용존산소량을 줄일수 있다는 점에서 장점이 있으나, 전 ultra pure water의 system이 열적으로 안정해야 하고 경제적인 문제가 수반하는 단점을 가지고 있다. 후자의 경우, 미량의 과산화수소수 (1~10,000 ppm)를 이용해 처리 해주는 방법의 경우 경제적으로 큰 장점이 있고, 처리가 단순하다는 장점이 있으나 과산화수소수 자체에 포함하고 있는 높은 impurit level, 그리고 처리후 장시간의 flushing time을 가져야 한다는 단점등이 존재 하고 있다.요구된다. 몰입이 가능하여 임계치가 저하된 것으로 여겨진다. 또한 광학적 이득의 존재는 이 구조에 의한 극단파장 반도체 레이저다이오드의 실현 가능성을 나타내는 것이다.548 mL에 비해 통계학적으로 의의 있게 적었다(p<0.05). 결론: 관상동맥우회로 조성수술에서 전방온혈심정지액을 사용할 때 희석되지 많은 고농도 포타슘은 fliud overload와 수혈을 피하고 delivery kit를 사용하지 않음으로써 효과적이고 만족할 만한 심근보호 효과를 보였다.를 보였다.4주까지에서는 비교적 폐포는 정상적 구조를 유지하면서 부분적으로 소폐동맥 중막의 비후와 간질에 호산구 침윤의 소견이 특징적으로 관찰되었다. 결론: 분리 폐 관류는 정맥주입 방법에 비해 고농도의 cisplatin 투여로 인한 다른 장기에서의 농도 증가 없이 폐 조직에 약 50배 정도의 고농도 cisplatin을 투여할 수 있었으며, 또한 분리 폐 관류 시 cisplatin에 의한 직접적 폐 독성은 발견되지 않았

  • PDF

EFFECTS OF TITANIUM SURFACE COATING ON CERAMIC ADHESION (타이타늄 표면 코팅이 도재 결합에 미치는 영향)

  • Kim, Yeon-Mi;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Doh-Jae;Oh, Gye-Jeong;Lim, Hyun-Pil;Seo, Yoon-Jung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.601-610
    • /
    • 2007
  • Statement of problem: The adhesion between titanium and ceramic is less optimal than conventional metal-ceramic bonding, due to reaction layer form on cast titanium surface during porcelain firing. Purpose: This study characterized the effect of titanium-ceramic adhesion after gold and TiN coating on cast and wrought titanium substrates. Material and method: Six groups of ASTM grade II commercially pure titanium and cast titanium specimens$(13mm{\times}13mm{\times}1mm)$ were prepared(n=8). The conventional Au-Pd-In alloy served as the control. All specimens were sandblasted with $110{\mu}m\;Al_2O_3$ particles and ultrasonically cleaned for 5min in deionized water and dried in air before porcelain firing. An ultra-low-fusing dental porcelain (Vita Titankeramik) was fused on titanium surfaces. Porcelain was debonded by a biaxial flexure test at a cross head speed of 0.25mm/min. The excellent titanium-ceramic adherence was exhibited by the presence of a dentin porcelain layer on the specimen surface after the biaxial flexure test. Area fraction of adherent porcelain (AFAP) was determined by SEM/EDS. Numerical results were statistically analyzed by one-way ANOVA and Student-Newman-Keuls test at ${\alpha}=0.05$. Results: The AFAP value of cast titanium was greatest in the group 2 with TiN coating, followed by group 1 with Au coating and the group 3 with $Al_2O_3$ sandblasting. Significant statistical difference was found between the group 1, 2 and the group 3 (p<.05). The AFAP value of wrought titanium was greatest in the group 5 with TiN coating, followed by the group 4 with Au coating and the group 6 with $Al_2O_3$ sandblasting. Conclusion: No significant difference was observed among the three groups (p>.05). The AFAP values of the cast titanium and the wrought titanium were similar. However the group treated with $Al_2O_3$ sandblasting showed significantly lower value (p<.05).

Flux Decline and Fouling Mechanism of Si Colloidal Solution During the Ultra-Filtration (환외여과에 있어서 Si 콜로이드 용액의 투과유속 감소 및 오염특성)

  • Nam, Suk-Tae;Jeon, Jae-Hong;Lee, Seok-Ki;Choi, Ho-Sang
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.25-35
    • /
    • 1999
  • Behavior of permeate flux decline was examined through the hollow fiber membrane in ultrafiltration system for Si colloidal solution. Flux decline with time was due to the growth of Si cake deposited on the membrane surface and the pore blocking by Si particles for the hollow fiber membrane. At the pseudo steady state of operation, the permeate flux of dead-end flow was 60 % to that of the cross flow. The ratio of permeate flux to the pure water flux, $J/J_w$, decreased with increasing the trans-membrane pressure, from 64.2 % for $0.5kg_f/cm^2$ to 45.7 % for $2.0kg_f/cm^2$. When the feed flow rate was 3 L/min, the pore blocking model was dominant at the initial period of filtration and was followed by the cake filtration model. And with increasing the feed flow rate from 1 L/min to 3 L/min, $R_c$ was $1.79{\times}10^{12}{\sim}2.34{\times}10^{12}m^{-1}$ which was the about 40 % decreased value to that of the 1 L/min while $R_p$ was not changed and was $1.71{\times}10^{12}m^{-1}$ approximately.

  • PDF

Removal of Metallic Impurity at Interface of Silicon Wafer and Fluorine Etchant (실리콘기판과 불소부식에 표면에서 금속불순물의 제거)

  • Kwack, Kwang-Soo;Yoen, Young-Heum;Choi, Seung-Ok;Jeong, Noh-Hee;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • We used Cu as a representative of metals to be directly adsorbed on the bare Si surface and studied its removal DHF, DHF-$H_2O_2$ and BHF solution. It has been found that Cu ion in DHF adheres on every Si wafer surface that we used in our study (n, p, n+, p+) especially on the n+-Si surface. The DHF-$H_2O_2$ solution is found to be effective in removing metals featuring high electronegativity such as Cu from the p-Si and n-Si wafers. Even when the DHF-$H_2O_2$ solution has Cu ions at the concentration of 1ppm, the solution is found effective in cleaning the wafer. In the case the n+-Si and p+-Si wafers, however, their surfaces get contaminated with Cu When Cu ion of 10ppb remains in the DHF-$H_2O_2$ solution. When BHF is used, Cu in BHF is more likely to contaminate the n+-Si wafer. It is also revealed that the surfactant added to BHF improve wettability onto p-Si, n-Si and p+-Si wafer surface. This effect of the surfactant, however, is not observed on the n+-Si wafer and is increased when it is immersed in the DHF-$H_2O_2$ solution for 10min. The rate of the metallic contamination on the n+-Si wafer is found to be much higher than on the other Si wafers. In order to suppress the metallic contamination on every type of Si surface below 1010atoms/cm2, the metallic concentration in ultra pure water and high-purity DHF which is employed at the final stage of the cleaning process must be lowered below the part per trillion level. The DHF-$H_2O_2$ solution, however, degrades surface roughness on the substrate with the n+ and p+ surfaces. In order to remove metallic impurities on these surfaces, there is no choice at present but to use the $NH_4OH-H_2O_2-H_2O$ and $HCl-H_2O_2-H_2O$ cleaning.