• Title/Summary/Keyword: ultra wide band system

Search Result 173, Processing Time 0.019 seconds

Performance Analysis of Noncoherent OOK UWB Transceiver for LR-WPAN (저속 WPAN용 비동기 OOK 방식 UWB 송수신기 성능 분석)

  • Ki Myoungoh;Choi Sungsoo;Oh Hui-Myoung;Kim Kwan-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1027-1034
    • /
    • 2005
  • IEEE802.15.4a, which is started to realize the PHY layer including high precision ranging/positioning and low data rate communication functions, requires a simple and low power consumable transceiver architecture. To satisfy this requirements, the simple noncoherent on-off keying (OOK) UWB transceiver with the parallel energy window banks (PEWB) giving high precision signal processing interface is proposed. The flexibility of the proposed system in multipath fading channel environments is acquired with the pulse and bit repetition method. To analyze the bit error rate (BER) performance of this proposed system, a noise model in receiver is derived with commonly used random variable distribution, chi-square. BER of $10^{-5}$ under the line-of-sight (LOS) residential channel is achieved with the integration time of 32 ns and signal to noise ratio (SNR) of 15.3 dB. For the non-line-of-sight (NLOS) outdoor channel, the integration time of 72 ns and SNR of 16.2 dB are needed. The integrated energy to total received energy (IRR) for the best BER performance is about $86\%$.

Fixed node reduction technique using relative coordinate estimation algorithm (상대좌표 추정 알고리즘을 이용한 고정노드 저감기법)

  • Cho, Hyun-Jong;Kim, Jong-Su;Lee, Sung-Geun;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.220-226
    • /
    • 2013
  • Recently, with the rapid development of factory automation and logistics system, a few workers were able to manage the broad workplace such as large vessels and warehouse. To estimate the exact location of these workers in the conventional wireless indoor localization systems, three or more fixed nodes are generally used to recognize the location of a mobile node consisting of a single node. However, these methods are inefficient in terms of node deployment because the broad workplace requires a lot of fixed nodes compared to workers(mobile nodes). Therefore, to efficiently deploy fixed nodes in these environments that need a few workers, this paper presents a novel estimation algorithm which can reduce the number of fixed nodes by efficiently recognizing the relative coordinates of two fixed nodes through a mobile node composed of three nodes. Also, to minimize the distance errors between mobile node and fixed node, rounding estimation(RE) technique is proposed. Experimental results show that the error rate of localization is improved, by using proposed RE technique, 90.9% compared to conventional trilateration in the free space. In addition, despite the number of fixed nodes can be reduced by up to 50% in the indoor free space, the proposed estimation algorithm recognizes precise location which has average error of 0.15m.

The Hybrid Method of ToA and TDoA Using MHP Pulse in UWB System (UWB 시스템에서의 MHP 펄스를 이용한 ToA와 TDoA의 Hybrid 방식)

  • Hwang, Dae-Geun;Hwang, Jae-Ho;Kim, Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2011
  • Recently, ToA and TDoA estimation are favorable among all of estimation techniques because they have the best accuracy in estimating position. ToA and TDoA estimation are typical techniques based on time. So, it is important to have the time syncronization and offset between a target node and several reference nodes. If they don't have the time syncronization between a reference node and target node or have a time offset among reference nodes, the positioning error will increase due to the ranging error. The conventional positioning algorithm does not have a accurate device's position because ranging error is added the calc dation of the position. In this paper, we propose a hybrid method of ToA and TDoA ll increase due. We use MHP pulse that has orthogonal pulse instead of the existing pulse to transmit and receive pulses between a target node and reference nodes. We can estimate the target node's position by ToA and TDoA estimation to transmit and receive MHP pulses only once. When the proposed Hybrid method iteratively calculate the distance, we can select the ranging technique to have more accurate position. The simulation results confirm the enhancement of the Hybrid method.