• Title/Summary/Keyword: ultra precision machine

Search Result 275, Processing Time 0.025 seconds

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

A Study on Machined Surfaces Characteristics of Aluminum Alloy by AFM Measurement (AFM 측정법에 의한 알루미늄 합금의 초정밀 가공면 평가 연구)

  • Lee Gab-Jo;Kim Jong-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time, it is very important not only precision machine and machining technique but also the measurement technique. So, the improvement of measurement technique is to be joined together at once with improvement of machining technique. Finally, the quality and value of the parts are decided by precision measurement. This paper aims to study on the machined surfaces characteristics of aluminum alloy by AFM(Atomic force microscope) measurement. The objective is contribution to ultra-precision machining by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

A Study on the Development and Performance Evaluations for a Self-diagnostication Ultra-precision Lens Polishing Machine (자기 진단형 초정밀 렌즈 폴리싱기의 개발 및 성능 평가에 관한 연구)

  • Park S.H.;Lim S.H.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.241-242
    • /
    • 2006
  • Spherical glass lenses are used in many optical industries. The curvature, eccentricity and height of a tool affect the surface roughness and curvature of lenses. The purpose of this study is the development and performance of a self-diagnostication ultra-precision lens polishing machine. In this paper, structure analysis is performed to reduce maximum displacement and to maintain outside the resonance region by CATIA V5. A spherical center setting gage is developed to increase accuracy of the manufactured lenses. The surface roughness, curvature and thickness of the manufactured lenses are measured and studied.

  • PDF

Element Technology of the Ultra-Precision Machine Tools for Machining the Large Surface Micro Features (대면적 미세형상 복합 가공기의 요소기술)

  • Song C.K.;Park C.H.;Hwang J.H.;Kim B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.86-93
    • /
    • 2005
  • In this paper, we discuss the merits of mechanical machining to generate micro features on large surfaces. An overseas technology trend related to the micro machining and dedicated machinery is also presented. We provide an overview of what characteristics the machinery is required to have to generate micro features on large surfaces and what kind of technical barriers need to be overcome to put the technology to practical use.

  • PDF

A Study on the Form Accuracy Improvement of Mold Core for F-Theta Lens (F-Theta Lens 금형코어 형상정도 향상에 관한 연구)

  • Kim S.S.;Jeong S.H.;Kim H.U.;Kim H.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.777-780
    • /
    • 2005
  • The global consumption of aspheric surfaces will expand rapidly on the Electronics and Optical Components Information and Communications, Aerospace and Defense, and Medical optics markets etc. We must research on market, technology forecast and analysis of aspheric surfaces that is a principle step of ultra precision machine technology with a base one of optical elements. Especially, F-theta lens is one of the important parts in LSU(Laser scanning unit) because it affects on the optical performance of LSU dominantly. The core is most of important to produce plastic F-theta lens by plastic injection molding method, which is necessary to get the ultra-precision aspheric and non-axisymmetric machine processing technology.

  • PDF

Examples of Performance Estimation on the Feed System of Precision Machine Tools (정밀공작기계용 이송시스템의 성능평가 사례)

  • 박천홍;황주호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.19-26
    • /
    • 2004
  • 정밀 공작기계에 있어 안내/이송계(이하, 이송시스템)의 중요성은 새삼스럽게 강조할 필요가 없을 정도로 꾸준히 강조되어 왔다. 또한, 최근 들어서는 광부품, 반도체, 디스플레이 등 초정밀 가공기술시장의 급격한 확대에 따라 이들 산업의 제조장비용 핵심기술로서 이송시스템의 역할 및 수요는 훨씬 확대되어가고 있으며, 오히려 요구정밀도 면에서는 공작기계상에서의 요구성능을 초월하여, 이들 산업에서 개발된 기술이 역으로 공작기계에 적용되어야하는 시점으로까지 진전되고 있다.(중략)

Development and Evaluation of Ultra High-Speed Tapping Machine (초고속 태핑머신 개발 및 평가)

  • 김선호;김동훈;김선민;이돈진;이선규;안중환;이상규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.221-227
    • /
    • 2002
  • Tapping is a machining process that makes a female screw on parts to be assembly together. Recently, as the number of small and compact products increases the radius of tap as small as 1 mm is not unusual and more accurate tapping is needed. In complying with those needs, some high-speed tapping machines with synchronizing function have been developed. This paper describes the development of an ultra high-speed tapping machine up to 10,000rpm. The key factors in the tapping speed are the acceleration/deceleration and the synchronizing errors between spindle motor and fred motor. To minimize the acceleration/deceleration time, a low inertia spindle with a synchronous built-in servo motor was developed. To minimize the synchronizing errors, the tapping cycle algorithm was optimized on an open architecture CNC. The developed tapping machine has the acceleration/deceleration time of 0.13sec/10,000rpm for rigid tapping and the synchronizing error below 4.4%. The cycle time for tapping a female screw of M3 and depth 2 times diameter was 0.55sec.

A study of ultra-precision interrupt machining for an polygon mirror (초정밀 단속 절삭을 이용한 다각형 미러의 절삭특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2007
  • Generally, the core component of small precise optical device demands high accuracy of manufacturing processes. Although, the geometry of it is simple, the manufacturing technique to materialize is categorized as the ultra-precision machining and it must be done with the specialized machines and by the trained operator. Typical examples of small precise optical device are laser printer and phone camera. As a core part of laser printer, polygon mirror is used in laser scanning unit(LSU). It couldn't be fabricated with conventional machine but specified machine for polygon mirror machining. In this study, Polygon mirror with 16 surfaces was manufactured in the process of ultra-precision fly-cutting with Al material and investigated optimum machining conditions in terms of feedrate, pitch per cycle and depth of cut. Owing to process of polishing has bad influence on reflection angle, surface roughness, $R_{max}$=10nm, and form error, $Ra={\lambda}/10({\lambda}=632nm)$, are prerequisites for polygon mirror.

  • PDF

Study on Ultra-Precision Grinding Processing for Aspheric Glass Array Lens WC Core (비구면 유리 어레이 렌즈 성형용 초경합금 코어 초정밀 연삭 가공에 관한 연구)

  • Ko, Myeong Jin;Park, Soon Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.893-898
    • /
    • 2016
  • Plastic array lens are cheap to manufacture; however, plastic is not resistant to high temperatures and moisture. Optical glass represents a better solution but is a more-expensive alternative. Glass array lens can be produced using lithography or precision-molding techniques. The lithography process is commonly used, for instance, in the semiconductor industry; however, the manufacturing costs are high, the processing time is quite long, and spherical aberration is a problem. To obtain high-order aspherical shapes, mold-core manufacturing is conducted through ultra-precision grinding machining. In this paper, a $4{\times}1$ mold core was manufactured using an ultra-precision machine with a jig for the injection molding of an aspherical array lens. The machined mold core was measured using the Form TalySurf PGI 2+ contact-stylus profilometer. The measurement data of the mold core are suitable for the design criterion of below 0.5 um.

Input Shaping for Servo Control of Machine Tools (공작기계의 서보제어와 입력성형기법)

  • Kim, Byung-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1011-1017
    • /
    • 2011
  • Servo control loops are a core part in the control architecture of machine tools. Servo control loops manage acceleration, velocity and position of all the axes in a machine tool based on commands. The performance of servo control loops sets the basis for quality of production paris and cycle time reduction. First, this paper presents a general control architecture of machine tools and several control schemes in literature, which can be applicable to machine tools control; including Zero Phase Error Tracking Control (ZPETC) and Cross Coupling Control (CCC). After that, modem control strategies to mitigate the problem of high speed machining are reviewed. In high speed machining, high accelerations excite the machine structure up to high frequencies, thereby exciting the structure's modes of vibration. These structural vibrations need to be damped if accurate positioning or trajectory following is required. Input shaping is an attractive option in dealing with structural vibrations. The advantages and drawbacks of using input shaping technique for machine tools are discussed in detail.