• Title/Summary/Keyword: ultra high performance concrete (UHPC)

Search Result 192, Processing Time 0.028 seconds

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar

  • Rahdar, H.A.;Ghalehnovi, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • Since the concrete strength around the reinforcement rebar affects the tension stiffening, the tension stiffening effect of ultra high performance concrete on the concrete members reinforced by steel rebar is examined by testing the specimens with circular cross section with the length 850 mm reinforced by a steel rebar at the center of a specimen's cross section in this research. Conducting a tensile test on the specimens, the cracking behavior is evaluated and a curve with an exponential descending branch is obtained to explain the post-cracking zone. In addition, this paper proposes an equation for this branch and parameters of equation is obtained based on the ratio of cover thickness to rebar diameter (c/d) and reinforcement percentage (${\rho}$).

A review and analysis of circular UHPC filled steel tube columns under axial loading

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.417-430
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has aroused interest around the world owing to superior mechanical and durability properties over conventional concrete. However, the application of UHPC in practice poses difficulties due to its inherent brittleness. UHPC filled in steel tube columns (UHPC-FSTCs) are capable of restricting the brittle failure of non-reinforced UHPC columns and forming a high performance member with enhancement of strength and ductility. Currently, research on UHPC-FSTCs remains very limited and there is relatively little information about the mechanical behavior of these columns. Therefore, this study presents a review of past experimental studies to have a deeper insight into the compressive behavior of UHPC-FSTCs under axial loading on entire section and on concrete core. Based on the test results obtained from Schneider (2006) and Xiong (2012), an analysis was conducted to investigate the influence of the confinement index (${\xi}$) and diameter to steel tube thickness ratio (D/t) on the strength and the ductility in short circular UHPC-FSTCs. Furthermore, the appropriateness of current design codes including EC4, AISC, AIJ and previous analytical models for estimating the ultimate loads of composite columns was also examined by the comparison between the predictions and the test results. Finally, simplified formulae for predicting the ultimate loads in two types of loading pattern were proposed and verified.

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

On Applicability of UItra High Performance Concrete for Prestressed Concrete I-Girder (초고성능 콘크리트의 I형 PSC거더 적용성에 관한 고찰)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Kyung-Taek;Kim, Sung-Wook;Han, Nock-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.493-496
    • /
    • 2006
  • Ultra high performance concrete(UHPC) has an excellent strength, toughness, and durability. It seems that it is very efficiently applicable for various structures such as bridge, building. When it is used to bridge girder, It is possible to reduce the amount of concrete and steel, to cut down costs for construction. This paper estimated whether it was applicable and how it was efficient. It was confirmed that the height of girder could be reduced by 40% or more in using UHPC. We can also think that the stirrups can be removed considering the ductile tensile behavior of UHPC and that its very high compressive strength make the anchor plate smaller from this study.

  • PDF

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

Analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The use of ultra high performance concrete (UHPC) in composite columns offers numerous structural benefits, and has received recent research attention. However, the information regarding the behavior of steel tube confined concrete (STCC) columns employing UHPC has been extremely limited. Thus, this paper presents an overview of previous experimental studies on circular STCC columns with taking into account various concrete strengths to point out their distinctive features. The effect of the confinement factor and the diameter to thickness ratio on both strength and ductility in circular STCC columns employing UHPC was investigated. The applicability of current design codes such as EC4, AISC, AIJ and some available analytical models for concrete confined by steel tube was also validated by the comparison of ultimate loads between the prediction and the test results of Schneider (2006) and Xiong (2012). To predict the stress-strain curves for confined UHPC in circular STCC stub columns, a simplified model was proposed and verified by the comparison with experimental stress-strain curves.

Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members (하이브리드 강섬유 보강 초고강도 콘크리트 휨파괴형 부재의 강도 및 연성 평가에 관한 연구)

  • Yuh, Ok-Kyung;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.61-69
    • /
    • 2019
  • In this study, the flexural strength and curvature ductility factor of single and hybrid fiber reinforced ultra high strength concrete flexural members with conventional steel rebar were evaluated by experimental program with 3-UHSC beams. Test specimens were loaded by 4-pointed flexural loading. According to the test results, hybrid fiber reinforced UHPC test specimens had higher moment resisting capacity and ductility. For the safe design of hybrid fiber reinforced UHPC, test specimens were analyzed according to the sectional analysis method with material models suggested by K-UHPC design recommendation. Current K-UHPC design recommendation predict the moment resisting capacity of member conventionally and over-estimated the ductility.

Evaluation of the Mechanical Properties of Light Transmitting Concrete using TiO2 Photocatalyst (이산화티탄 광촉매 적용 광투과 콘크리트 역학특성 평가)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.63-64
    • /
    • 2019
  • Due to the rapid deterioration of the domestic atmosphere, people are suffering from inconveniences such as wearing fine dust masks all the time during outdoor activities. In this study, light transmitting concrete, LEFC(Light Emotion Friendly Concrete), using TiO2 photocatalyst was produced. Since the characteristics of LEFC where acrylic rods are inserted require self-consolidating performance, the purpose was to utilize UHPC(Ultra High Performance Concrete) materials to obtain high-flowability. Further, the compressive strength and flexural strength were evaluated to prevent the reduction of epidemiological performance by utilizing UHPC materials. As such, a basic study was carried out to develop LEFC materials using photocatalyst that can purify the air and stimulate human sensibility.

  • PDF