• Title/Summary/Keyword: ultra high hardness

Search Result 94, Processing Time 0.028 seconds

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Study on the Spheroidization of Cementite by Controlled-Rolling and Martensitic Nucleation and its Growth during Cooling in Ultra High Carbon Steel (초고탄소강의 제어압연에 의한 세멘타이트의 구상화와 냉각중 마르텐사이트의 핵발생과 성장의 현상론적 고찰)

  • Choi, C.S.;Yoon, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.98-106
    • /
    • 1993
  • Ultra high carbon steel (Fe-1.4%C) was prepared by means of a high frequency induction furnace. The preferred nucleation site of martensite was observed. The changes of hardness and impact thoughness due to tempering temperatures, and the spheroidization of cementite by controlled -rolling were also studied for the steel. The preferred nucleation site of martensite in the ultra high carbon steel is prior austenite grain boundary. The hardness of the steel is slightly increased up to about $300^{\circ}C$, and then decreased with further tempering temperature. However, the impact energy keeps a almost constant value, independent of the tempering temperature. The spheroidization of cementite is accelerated as the reduction in thickness per rolling pass is increased and the number of the rolling passes becomes greater.

  • PDF

An Experimental Study of Ultra-precision Turning of High Transmittance Optical Glass(SF57HHT) (고투과율 광학유리(SF57HHT) 초정밀절삭의 실험적 연구)

  • Kim, Min-Jae;Lee, June-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.191-195
    • /
    • 2012
  • Heavy flint optical glass(SF57HHT) is new material that has extremely high transmittance. Due to brittleness and high hardness, optical glass is one of the most difficult to materials for ultra-precision turning. According to the hypothesis of ductile machining, all materials, regardless of their hardness and brittleness, will undergo transition from brittle to ductile machining region below critical undefromed chip thickness. In this study, cutting test was carried out to evaluate cutting performance of heavy flint glass using ultra-precision machine with single crystal diamond bite. The machined workpiece surface topography, tool wear and surface roughness were examined using AFM and SEM. The experimental results indicate that the machining mode become the brittle mode to ductile mode, when the maximum undeformed chip thinkness is large than critical value. Tool wear mainly occurs on the flank face and its wear mechanism is dominated by abrasion. This study demonstrates the feasibility of SF57HHT by diamond turning.

Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process (누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동)

  • Kim Y.S.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).

An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Fine Grained Pure Al Fabricated by ARB Process (누적압연접합(Accumulative Roll-Bonding, ARB)에 의한 Al의 결정립 미세화와 마모 특성 연구)

  • Park K.S.;Lee T.O.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.21-24
    • /
    • 2000
  • Ultra-fine grains were produced in pure Al using an Accumulative Rolling-Bonding (ARB) process. After several cycles of the ARB process, pure Al sheets were filled with the ultra-fine grains whose diameters were several hundred nano-meters. With ARB cycles, the nature of grain boundaries of the ultra-fine grains changed from diffusive sub-boundaries to well-defined high angle boundaries. After 7 cycles, ultra-fine polycrystals with large misorientations between neighboring grains were obtained. Sliding wear tests using a pin-on-disk type wear tester were co ducted on the ultra-fine grained pure Al. Wear rates of pure Al increased with the increase of ARB cycle numbers in spite of the increase in hardness. Worn surfaces and cross-sections were examined with optical microscopy (OM) and scanning electron microscopy (SEM) In investigate the wear mechanism of the ultra-fine grained pure Al.

  • PDF

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF

A Study on the Performance Evaluation of End Mill Tool Fabricated by Ultra-Fine WC (초미립 WC 소재 엔드밀 공구의 성능 평가에 관한 연구)

  • Kim, Do-Hyoung;Woo, Yong-Won;Lee, Hyun-Ho;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The ultra-fine tungsten carbide(WC) powders have been actively used in the cemented carbides industry, because they have excellent mechanical properties such as high hardness, strength, and toughness. In this study, ultra-fine WC-Co alloys powders have been fabricated by thermochemical and thermomechanical process such as spray conversion process or high energy ball milling. The non-coated end-mill which is made of ultra-fine tungsten carbide is investigated by measuring cutting force, tool wear, tool life, and surface roughness profile according to cutting length. The machining test was conducted with high hardened workpiece and their performances are investigated in high speed cutting conditions. Also, the relationship between the machining characteristics and the Co contents are investigated under various high speed cutting conditions.

Re-Ir Coating Effect of WC Core Surface for Aspheric Glass Lens Molding (비구면 Glass 렌즈 성형용 초경합금 코어면 Re-Ir 코팅 효과)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.441-441
    • /
    • 2007
  • As Rhenium-Iridium{Re-Ir) coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass lens for mobile phone module having 3 mega pixel and 2.5X zoom, and molding core(WC) was manufactured having performed ultra-precision machining. Effects of Re-Ir coating on form accuracy (P-V) of molding core and surface roughness(Ra) were measured and evaluated.

  • PDF