• 제목/요약/키워드: ultimate tensile strain

Search Result 176, Processing Time 0.02 seconds

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

A Study on the Strain Localization of Concrete (콘크리트의 변형률 국소화에 관한 연구)

  • Seo, Chul;Byun, Keun-Joo;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-182
    • /
    • 1995
  • Strain localization is important phenomenon since it governs the total behavior or ultimate loads in various kinds of engineering problems. Establishment of an analysis method for strain localization phenomena is also of great concern for expansion of fracture mechanics of concrete. Inside zone of localization, a decrese in stress is accompanied by an increse in strain; outside the strain decreses. All deformation localization phenomenon cannot be predicted by both the classical stress-strain formulation and the linear elastic fracture mechanics. In this paper, a simple one dimensional model including localized deformation zone is studied under compressive and tensile loading. When the model is loaded. localization is assumed to occur uniformly in a finite region and material outside the localization zone is modelled as elastic unloading occurs. Size effects of effective elastic moduli under compression and tension in localization zone are examined.

  • PDF

A Study on Low-Cycle Fatigue Behavior at Elevated Temperature of High Carbon Steel Used For Structural Purpose (構造용高炭素鋼材 의 高溫 低 사이클 피勞擧動 에 關한 硏究)

  • 옹장우;김재훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1982
  • This study was undertaken to determine tensile properties and low-cycle fatigue behavior of 0.6%C high carbon steel used of structural purposes at temperatures up to 500.deg.C. In the low-cycle fatigue test the upper limit was decided by elongation(i.e. the total strain range), while the lower limit was defined by the load (i.e. zero load). The following results were obtained. Both, the ultimate tensile strength and low-cycle fatigue resistance attain the maximum values near 250.deg.C. Above this temperature the values decrease rapidly as the temperature increases. The low-cycle fatigue resistance decreases whenever there is an increase of the total strain range. Because the hardness of cycle fatigued specimen correlates cyclic hardening and cyclic softening, therefore the hardness of cycle fatigued specimen is smaller than that of the nonfatigued specimen at room temperature and 500.deg.C but much larger than the hardness of the nonfatigued specimen near 250.deg.C.

Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint (알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구)

  • Yu, Y.C.;Park, J.H.;Jeong, E.S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Load Transfer Characteristics of Post-Tensioning Anchorage (포스트텐션용 정착구의 하중전달 특성에 관한 연구)

  • 김민수;김진근;유영섭;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.657-662
    • /
    • 2000
  • This paper presents the results from experimental study that investigated to explore the load transfer characteristics of post-tensioning anchorage zones. The experimental program investigated the primary variables which affect the ultimate load, lateral strains and crack width: concrete compressive strength, details of reinforcement and shape of anchorage. Through this research, it was found that the governing factor of the ultimate load was not compressive cylinder strength but tensile splitting strength. Ultimate load was increased and lateral strain was decreased as the ratio of spiral increased because the lateral expansion of th concrete inside the spiral was restrained by the spiral. Furthermore, the shape of anchorage which can diminish the wedge effect of anchorage and disperse the anchorage force in various depths was more effective.

  • PDF

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

The Effects of Elbow Joint Angle on the Mechanical Properties of the Common Extensor Tendon of the Humeral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.582-591
    • /
    • 2004
  • The purpose of this study was to determine the effects of elbow joint angle on mechanical properties, as represented by ultimate load, failure strain and elastic modulus, of bone-tendon specimens of common extensor tendon of the humeral epicondyle. Eight pairs of specimens were equally divided into two groups of 8 each, which selected arbitrarily from left or right side of each pair, positioned at 45$^{\circ}$ and 90$^{\circ}$ of elbow flexion and subjected to tension to failure in the physiological direction of the common extensor tendon. For comparison of the differences in the failure and elastic modulus between tendon and the bone-junction, data for both were evaluated individually. Significant reduction in ultimate load of bone-tendon specimens was shown to occur at 45$^{\circ}$. The values obtained from the bone-tendon junctions with regard to the failure strain were significant higher than those from tendon in both loading directions, but the largest failure strain at the bone-tendon junction was found at 45$^{\circ}$. The elastic modulus was found to decrease significantly at the bone-tendon junction when the loading direction switched from 90$^{\circ}$ to 45$^{\circ}$. Histological observation, after mechanical tensile tests, in both loading directions showed that failure occurred at the interface between tendon and uncalcified fibrocartilage in the thinnest fibrocartilage zone of the bone-tendon junction. We concluded that differences in measured mechanical properties are a consequence of varying the loading direction of the tendon across the bone-tendon specimen.

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF