• Title/Summary/Keyword: ultimate strength behaviour

Search Result 136, Processing Time 0.026 seconds

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

Effect of Stiffener's Web Height against Axial Compression Ultimate Strength Considering Lateral Pressure Load (횡하중을 고려한 압축최종강도에 대한 보강재 치수의 영향)

  • Oh, Young-Cheol;Ko, Jae-Yong;Oh, Dong-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2008
  • Stiffened panels are basic strength members which have been used widely in a vessel or an offshore. They have been used often a deck, a side and a bottom structure of ship and have a number of one sided stiffener in either one or both directions called grillage. Their buckling and plastic collapse become damaged reason of the hull girder so it needs to investigate accurately buckling and ultimate strength of stiffened panels. In the present paper, using the ANSYS, a commercial finite element analysis code, we conducted the evaluation regarding buckling and post-buckling behaviour of stiffened panels, and analyzed stiffener's web height change, considering the effect of lateral pressure load against compression ultimate strength.

  • PDF

Ultimate torsional behaviour of axially restrained RC beams

  • Bernardo, Luis F.A.;Taborda, Catia S.B.;Andrade, Jorge M.A.
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.67-97
    • /
    • 2015
  • This article presents a computing procedure developed to predict the torsional strength of axially restrained reinforced concrete beams. This computing procedure is based on a modification of the Variable Angle Truss Model to account for the influence of the longitudinal compressive stress state due to the axial restraint conditions provided by the connections of the beams to other structural elements. Theoretical predictions from the proposed model are compared with some experimental results available in the literature and also with some numerical results from a three-dimensional nonlinear finite element analysis. It is shown that the proposed computing procedure gives reliable predictions for the ultimate behaviour, namely the torsional strength, of axially restrained reinforced concrete beams under torsion.

Reliability Analysis of Floating Offshore Structures -structural systems reliability to change in uncertainty of design variables- (부유식 해양구조물의 신뢰성해석 -설계변수의 불확실성 변화에 대한 구조시스템 신뢰성-)

  • Lee, Joo-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.224-231
    • /
    • 1993
  • This paper is concerned with the influence of changes in stochastic parameters of the important resistance variables such as the strength modelling parameter and material and geometric properties, on the system safety level of TLP structures. The effect of parameters governing the post-ultimate behaviour is also addressed. An extended incremental load method is employed for the present study, which has been successfully applied to the system reliability analysis of continuous structures. The Hutton Field TLP and its one variant called herein TLP-B, are chosen as TLP models in this paper. The results of several parameteric studies lead to useful conclusions relating to the importance of reducing uncertainties in strength formulae and relating the importance of component post-ultimate behaviour to the systems reliability of such structures.

  • PDF

An Analytical Solution of Nolinear Behaviour for Simply Supported Rectangular Plates to Biaxial Compression (2축방향압축력(軸方向壓縮力)을 받는 단순지지평판(單純支持平板)에 대(對)한 비선형거동(非線形擧動)의 해석해(解析解))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.169-181
    • /
    • 1991
  • In this study, an analytical solution of pre-buckling, buckling, post-buckling, ultimate strength and post-ultimate strength behaviour of simply supported rectangular plates subjected to biaxial compression is derived. Parametric study with varying the aspect ratio, the slenderness ratio and the loading ratio is carried out. The present solution may be used as basical data when the verfication of the numerical and experimental result is made.

  • PDF

A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust (면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구)

  • 고재용;박주신;최익창;이계희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

Behaviour of high strength concrete-filled short steel tubes under sustained loading

  • Younas, Saad;Li, Dongxu;Hamed, Ehab;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Concrete filled steel tubes (CFSTs) are extensively used in a variety of structures due to their structural and economic advantages over other types of structures. Considerable research has been conducted with regards to their short-term behaviour, and very limited studies have focused on their long-term behaviour. In this study, a series of tests were carried out on high strength squat (short) CFSTs and concrete cylinders under controlled conditions of temperature and humidity to better understand their time dependent behaviour. A number of parameters were investigated including the influence of steel and concrete bond, confinement, level of sustained load and sizes of specimens. The results revealed that creep strains increased by more than 40% if there was no bonding between steel tube and concrete core. As expected, creep and shrinkage of concrete inside a steel tube were significantly less than those developed in exposed concrete. At the end of a creep period of six months, all the specimens were tested to failure to observe the influence of sustained loads on the ultimate strength. It was found that creep does not have a major effect on the strength of short CFSTs in the specific experimental study conducted here, which was less than 2.5%.

Behaviour of cold-formed steel hollow and concrete-filled members

  • Jane Helena, H.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2005
  • This paper presents the results of a series of tests carried out on hollow and concrete-filled coldformed steel sections subjected to axial and bending forces. The effects of eccentricity ratio and strength of in-fill on the behaviour of these sections were studied. A total of forty-eight medium sized columns and six beams were tested to failure. Extensive measurements of material properties, strains, axial shortening and lateral deflection were carried out. Interaction of local and overall buckling was observed in the tests. Failure mode observations were local buckling coupled with overall buckling. A description of the specially fabricated end fixtures for applying eccentric loading to the columns and to simulate pinned end condition is also presented. The experimental results of hollow columns are compared with the existing Indian, British and American codes of practice and the results of concrete-filled columns are compared with EC4 recommendations. It is seen that in the case of hollow columns predictions based on British and American codes of practice and in the case of concrete-filled columns predictions based on EC4 recommendations agree reasonably well with the experimental results. From the experiments it is seen that the provision of in-fill substantially increases the ultimate load carrying capacity of the order of one and a half to two times and the increase in strength of the in-filled concrete from a low grade concrete of compressive strength 24.94 MPa to a high grade concrete of compressive strength 33.26 MPa increases the ultimate load carrying capacity by one and a half times irrespective of the eccentricity of loading.

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.