• 제목/요약/키워드: ultimate strength analysis

검색결과 726건 처리시간 0.021초

Flexural behaviour of reinforced concrete beams with silica fume and processed quarry fines

  • Priya, T. Shanmuga;Senthilkumar, R.
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 2020
  • This paper studies the influence of silica fume and Processed Quarry Fines (PQF) on the flexural behaviour of the reinforced concrete beams by experimental as well as numerical studies. The study has been shown that the incorporation of PQF can significantly increase the stiffness and the flexural strength of reinforced HPC beams. Also, the ultimate strength of specimens prepared with the 10% silica fume and 100% PQF are higher compared to conventional reinforced concrete specimen. Numerical analysis is performed to find the ultimate strength of HPC beams to compare with experimental results. Nonlinear behaviour of steel reinforcing bars and plain concrete is simulated using appropriate constitutive models and experimental results. The results indicate that the ultimate strength, deformed shape and crack patterns of reinforced HPC beams obtained through the Finite Element Analysis (FEA) are confirming with the experimental results.

선체 호퍼너클 구조의 최종강도 및 피로강도 (Ultimate and Fatigue Strength of Ship Hopper Knuckles)

  • 김영한;정장영;백점기;김하수;김도현
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.77-82
    • /
    • 2000
  • The aim of the present study is to investigate the characteristics of ultimate the fatigue strength of hopper knuckles in merchant vessels carrying bulk cargo or LNG/LPG/ The ultimate strength test is undertaken on the hopper knuckle model, subject to end tip load. A series of fatigue tests are carried out on the hopper knuckle models varying the level of the nominal stresses. The elasto-plastic finite element analysis is performed to examine the distribution of hot spot stresses near weld toe and also the progressive collapse behavior of the test model. S-N curves are developed based on the fatigue test results.

  • PDF

자유단 충간분리를 갖는 복합재 적층판의 최종 파괴강도 (Ultimate Strength of Composite Laminates with Free-Edge Delamination)

  • 양광영;윤성운;김재열
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presets experimental and analytical studies of ultimate strength of [$[30_2/-30_2/90]_S$ carbon/epoxy laminates with free-edge delamination under uniaxial tension. We performed tensile teat far laminates with Telflon inserted on interfaces to simulate initial free-edge delamination, The experiment reveals that extensional stiffness of the laminate decreases by the initiation of the delamination, and that strength of the laminate without delamination is smaller than that of the laminates with delamination. Generalized quasi-three delamination finite element analysis, which employs energy release rate and maximum stress criteria, predicts the ultimate strength of the laminates with sufficient accuracy.

Influence of initial imperfections on ultimate strength of spherical shells

  • Yu, Chang-Li;Chen, Zhan-Tao;Chen, Chao;Chen, Yan-ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.473-483
    • /
    • 2017
  • Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

Permanent Means of Access 강도 평가 방법에 대한 연구 (A Procedure for a Strength Assessment of Permanent Means of Access Structure)

  • 장범선;정성욱;고대은;전민성;김지영
    • 대한조선학회논문집
    • /
    • 제46권1호
    • /
    • pp.31-42
    • /
    • 2009
  • Common structural rule (CSR) doesn' t provide any other specific regulations for permanent means of access (PMA) platform structure in a cargo oil tank. The PMA platform is recommended to comply with scantling requirement of local support member. However, it leads to too conservative scantlings compared with actual loads imposed on the platform. This paper proposes a strength assessment procedure for the PMA structure based on a nonlinear ultimate strength. The ultimate strength is evaluated in a sufficiently conservative way. The first linear buckling mode is used as an initial imperfection shape and its magnitude is determined using the definitions of DNV PULS. Since the same imperfection mode as the failure mode of the ultimate limit state is assumed, it can accelerate the failure. Au ultimate strength capacity curve obtained from a series of nonlinear FE analysis is compared with actual stresses calculated by CSR cargo hold analysis.

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.

초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析) (Compressive Ultimate Strength Analysis of Plates with Initial Imperfections)

  • 이주성
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

A Study on the Ultimate Strength Behaviour of Stiffened Plate according to the Stiffener Section

  • Ko Jae-Yogn;Park Joo-Shin;Park Sung-Hyeon
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 춘계학술발표회
    • /
    • pp.113-119
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members In the ultimate limit state design. therefore. a primary task is to accurately calculate the budding and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately. resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression.

  • PDF

철탑구조의 트러스형상 변화에 따른 구조거동 분석 (Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation)

  • 문미영;김우범
    • 한국강구조학회 논문집
    • /
    • 제29권4호
    • /
    • pp.261-268
    • /
    • 2017
  • 본 논문에서는 강관철탑의 3차원 비선형해석 및 비교 검증 실험을 통하여 보조재의 역할 및 결구 거동 특성을 파악하였다. 특히 기존 철탑의 삼각결구를 단순화한 사각결구의 거동특성을 살펴보기 위하여 외측결구와 내측결구의 형상을 달리하고 각 결구의 다양한 조합을 통하여 보조재가 철탑의 내력에 미치는 영향을 살펴보았다.