• Title/Summary/Keyword: ultimate moment

Search Result 381, Processing Time 0.021 seconds

Retrofitting of exterior RC beam-column joints using ferrocement jackets

  • Bansal, Prem Pal;Kumar, Maneek;Dar, Manzoor Ahmed
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.313-328
    • /
    • 2016
  • Beam-column joints are recognized as one of the most critical and vulnerable zones of a Reinforced Concrete (RC) moment resisting structure subjected to seismic loads. The performance of the deficient beam-column joints can be improved by retrofitting these joints by jacketing them with varied materials like concrete, steel, FRP and ferrocement. In the present study strength behavior of RCC exterior beam-column joints, initially loaded to a prefixed percentage of the ultimate load, and retrofitted using ferrocement jacketing using two different wrapping schemes has been studied and presented. In retrofitting scheme, RS-I, wire mesh is provided in L shape at top and at bottom of the beam-column joint, whereas, in scheme RS-II along with wire mesh in L shape at top and bottom wire mesh is also provided diagonally to the joint. The results of these retrofitted beam-column joints have been compared with those of the controlled joint specimens. The results show an improvement in the ultimate load carrying capacity and yield load of the retrofitted specimens. However, no improvement in the ductility and energy absorption has been observed.

An Experimental Assessment on the Structural Behavior of Bolt Connected Deep Corrugated Steel Plate (볼트이음된 대골형 파형강판의 구조거동에 대한 실험적 평가)

  • Oh, Hong Seob;Lee, Ju Won;Jun, Beong Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Deep corrugated steel plate structure has more compressive force and flexibility in bending behavior than short span structure. Asymmetric earth pressure distribution has occurred during construction. Ultimate strength and moment in domestic area, having superior ability at bending strain has been examined in this study. Based on the result of the study preceded, performance of Deep corrugated steel plate specimen has been evaluated by comparing increase of strength according to the increase of reinforcement content in bolt connections and failure mode of specimen.

Evaluation on structural behaviors of prestressed composite beams using external prestressing member

  • Ahn, Jin-Hee;Jung, Chi-Young;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.247-275
    • /
    • 2010
  • In this study, experimental, numerical, and analytical approaches were carried out to evaluate the behavior and prestressing effect of prestressed composite beam by external tendon and cover plate. Behavior of prestressed composite beam, load-carrying capacity, effects of prestressing, and ultimate strength were estimated. The contribution of the section increase of the prestressing method using tendon was less than the prestressing method using cover plate. In accordance with numerical and analytical approaches, the ultimate strength of the prestressed composite beam is shown to be the same value because strength is determined according to the plastic resistance moment and the plastic neutral axis; however, both plastic resistance moment and neutral axis are not affected by prestressing force but affected by sectional stiffness of the prestressing member. Based on these approaches, we concluded that the prestressing method using tendon can be useful in applications without an increase in self-weight, and the prestressing method using high-strength cover plate can be applied to reduce the deflection of the composite beam. The prestressing method using high-strength cover plate can also be used to induce prestress of the composite beam in the case of a large deflection due to a smaller sectional stiffness of the composite beam.

Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test (원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.

Integration of Optimality, Neural Networks, and Physiology for Field Studies of the Evolution of Visually-elicited Escape Behaviors of Orthoptera: A Minireview and Prospects

  • Shin, Hong-Sup;Jablonski, Piotr G.
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Sensing the approach of a predator is critical to the survival of prey, especially when the prey has no choice but to escape at a precisely timed moment. Escape behavior has been approached from both proximate and ultimate perspectives. On the proximate level, empirical research about electrophysiological mechanisms for detecting predators has focused on vision, an important modality that helps prey to sense approaching danger. Studies of looming-sensitive neurons in locusts are a good example of how the selective sensitivity of nervous systems towards specific targets, especially approaching objects, has been understood and realistically modeled in software and robotic systems. On the ultimate level, general optimality models have provided an evolutionary framework by considering costs and benefits of visually elicited escape responses. A recent paper showed how neural network models can be used to understand the evolution of visually mediated antipredatory behaviors. We discuss this new trend towards integration of these relatively disparate approaches, the proximate and the ultimate perspectives, for understanding of the evolution of behavior of predators and prey. Focusing on one of the best-studied escape pathway models, the Orthopteran LGMD/DCMD pathway, we discuss how ultimate-level optimality modeling can be integrated with proximate-level studies of escape behaviors in animals.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

Flexural Cnaracteristics of Polymer Concrete Sandwich Constructions (폴리머 콘크리트 샌드위치 구조재의 휨특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-134
    • /
    • 1989
  • This study was conducted to investigate the flexural behaviour of sandwich constructions with cement concrete core and polymer concrete facings. Six different cross-sectional shapes using epoxy based polymer concrete facings were investigated. Some of the results from the static tests are given including the load-deflection responses, load-strain relationships, ultimate moment, and mode of failure. From the. results the following conclusions can be made. 1. The various strengths of polymer concrete were very high compared to the strengths for portland cement concrete, while modulus of elasticity assumed an aspect of contrast. 2. The thickness of core and facing exerted a great influence on the deflection and ultimate strenght of polymer concrete sandwich constructions. 3. The variation shape of deflection and strain depend on loading were a very close approximation to the straight line. The ultimate strain of polymer concrete at the end of tensile side were ranged from 625x10-6 to 766x10-6 and these values increased in proportion to the decrease of thickness of core and facings. 4. The ultimate moments of polymer sandwich constructions were 3 to 4 times that of cement concrete constructions which was transformed same section. It should he noted that polymer concrete have an effect on the reinforcement of weak constructions. 5. Further tests are neede to investigate the shear strain of constructions, and thermal expansion, shrinkage and creep of cement and polymer concrete which were composite materials of sandwich constructions.

  • PDF

Ultimate strength of composite structure with different degrees of shear connection

  • Kim, Sang-Hyo;Jung, Chi-Young;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.375-390
    • /
    • 2011
  • Composite beam, which combined the material characteristic of the steel and concrete, has been widely used in the construction of various building and bridge system. For the effective application of the composite beam, the composite action on the composite interface between the concrete element and the steel element should be achieved by shear connectors. The behavioral characteristics of composite beam are related with the degree of interaction and the degree of shear connection according to the shear strength and shear stiffness of the stud shear connectors. These two concepts are also affected by the number of installed shear connector and the strength of composite materials. In this study, experimental and analytical evaluations of the degree of shear connection affected by stud diameter were conducted, and the relationship between structural behavior and the degree of shear connection was verified. The very small difference among the ultimate loads of the specimens depending on the change of the degree of connection was possibly because of the dependence of the ultimate load on the characteristic of plastic moment of the composite beam.

Condition assessment of raking damaged bulk carriers under vertical bending moments

  • Kim, Do Kyun;Yub, Su Young;Choi, Han Suk
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.629-644
    • /
    • 2013
  • This paper concerns about the raking damages on the ultimate residual hull girder strength of bulk carriers by applying the modified R-D diagram (advanced method). The limited raking damage scenarios, based on the IMO's probability density function of grounding accidents, were carried out by using sampling technique. Recently, innovative method for the evaluation of the structural condition assessment, which covers the residual strength and damage index diagram (R-D diagram), was proposed by Paik et al. (2012). This concept is applied in the present study and modified R-D diagram, which can be considered vessel size effect, is then proposed. Four different types of bulk carrier structures, i.e., Handysize (37K), Supramax (57K), Kamsarmax (82K) and Capesize (181K) by Common Structural Rule (CSR), were applied to draw the general tendency. The ALPS/HULL, intelligent supersize finite element method, was employed for the ultimate longitudinal strength analysis. The obtained empirical formulas will be useful for the condition assessment of bulk carrier structures. It can also cover different sizes of the bulk carriers in terms of ultimate longitudinal strength. Important insights and findings with useful guidelines developed in this study are summarized.

Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength (이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가)

  • P.D.C. Yang;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.93-102
    • /
    • 1992
  • In this paper presented is the reliability analysis of a double skinned hull structure against the ultimate bending moment and fatigue strength under longitudinal bending. The ultimate bending strength is obtained through the beam-column approach in which the load-end shortening curves(stress-strain curves) of stiffened plates under mini-axial compression are derived using the concept of plastic hinge collapse. The fatigue damage only is considered as fatigue failure for which the Miner's damage rule is employed. Assessed are fatigue reliability for the possible joint types found at deck structure. Also included is the reliability analysis of a series system of which elements are ultimate and fatigue failure.

  • PDF