• Title/Summary/Keyword: ultimate load-bearing capacity

Search Result 225, Processing Time 0.022 seconds

Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns

  • Yang, Yong;Chen, Yang;Zhang, Jintao;Xue, Yicong;Liu, Ruyue;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • This paper experimentally and analytically elucidates the shear behavior and shear bearing capacity of partially prefabricated steel reinforced concrete (PPSRC) columns and hollow partially prefabricated steel reinforced concrete (HPSRC) columns. Seven specimens including five PPSRC column specimens and two HPSRC column specimens were tested under static monotonic loading. In the test, the influences of shear span aspect ratio and difference of cast-in-place concrete strength on the shear behavior of PPSRC and HPSRC columns were investigated. Based on the test results, the failure pattern, the load-displacement behavior and the shear capacity were focused and analyzed. The test results demonstrated that all the column specimens failed in shear failure mode with high bearing capacity and good deformability. Smaller shear span aspect ratio and higher strength of inner concrete resulted in higher shear bearing capacity, with more ductile and better deformability. Furthermore, calculation formula for predicting the ultimate shear capacity of the PPSRC and HPSRC columns were proposed on the basis of the experimental results.

Analysis for Bearing Capacity of Paper Ash in Industrial Waste as Filling Material (성토재로서 산업폐기물 제지회의 지지력 분석)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • In this study, centrifuge model tests were fulfilled to investigate the characteristics of bearing capacity of paper ash as a filling material. The model tests were done varying the footing width and gravity level. The settlement and vertical soil pressure by loading were measured. The results from the tests were compared with the one from FLAC program using finite difference method and bearing capacity theory. After all, it was shown that the characteristics of load-settlement represented the local shear failure, which the settlement ratio s/B showed inflection point around 25~30%. As g-level and footing width were increasing, the load strength was increasing. The ultimate bearing capacity from the tests was very closed the results from Terzaghi's theory. As the distance from footing center was increasing, the vertical soil pressure was decreasing. If E/B is higher than 7, the stress by loading was almost increasing. The vertical displacement from loading was the largest one around under the footing and was almost occurred when the depth>4cm and E/B is higher than 5.0.

  • PDF

Finite Difference Modeling of a Piled Raft Foundation with Axisymmetry Condition and Interface Element (축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구)

  • You, Kwang Ho;Kim, Hyung Ryul;Bae, Sang Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.853-861
    • /
    • 2015
  • In this study, FDM modelling with axisymmetry condition and interface element was verified whether it is reasonable to estimate compositive behavior of a piled raft foundation. To this end, the modelling validity of piled raft foundations was estimated by comparing and analyzing numerical analysis results and laboratory model test results. Also, load bearing ratio of a raft is analyzed by performing sensitivity analysis of foundation parameters with the actual field conditions. As a result of this study, correlation between bearing capacity and vertical displacement of numerical results turned out to be similar with that of a laboratory model test. In addition, ultimate bearing capacity of piled rafts and load bearing ratio of the raft is calculated to be similar in both cases. The load bearing ratio of the raft was also estimated to be in the range of 33% to 52% from the sensitivity analysis. The results were confirmed to be similar to the previous studies. Therefore, it can be inferred that piled rafts can be effectively modelled applying axisymmetry condition and interface element.

Determination of the bearing capacity of model ring footings: Experimental and numerical investigations

  • Turedi, Yakup;Emirler, Buse;Ornek, Murat;Yildiz, Abdulazim
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • In this paper, it was presented an investigation on the load-settlement and vertical stress analysis of the ring footings on the loose sand bed by conducting both laboratory model tests and numerical analyses. A total of twenty tests were conducted in geotechnical laboratory and numerical analyses of the test models were carried out using the finite element package Plaxis 3D to find the ultimate capacities of the ring footings. Moreover, the results obtained from both foregoing methods were compared with theoretical results given in the literature. The effects of the ring width on bearing capacity of the footings and vertical stresses along the depth were investigated. Consequently, the experimental observations are in a very good agreement with the numerical and theoretical results. The variation in the bearing capacity is little when $r_i/R_o$ <0.3. That means, when the ring width ratio, $r_i/R_o$, is equal to 0.3, this option can provide more economic solutions in the applications of the ring footings. Since, this corresponds to less concrete consumption in the ring footing design.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

The Failure Standard to Estimate the Behavior and Bearing Capacity for Connected-type Foundation of Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 기초의 거동 특성 및 지지력결정을 위한 파괴기준)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.27-40
    • /
    • 2011
  • In this study, we performed model lateral load test for connected-type foundations of transmission tower with bar in clay, and proposed failure standard and measuring method to estimate ultimate lateral bearing capacity. For this study, we performed model lateral load tests in Iksan, Jeollabukdo and analyzed load-displacement characteristic of the model. We manufactured model foundation of transmission tower connected with bar and that considered a change of rigidity. We installed various measuring sensors to find general foundation behavior. From the test results, we measured, compared and analyzed load capacities, and then proposed failure standard to estimate bearing capacity for connecting type foundation.

Calculation of Bearing Capacity of Tapered Drilled Shafts in Cohesionless Soils Using Shape Factor (형상계수를 이용한 사질토 지반에 타설된 테이퍼말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.13-22
    • /
    • 2008
  • Fourteen calibration ehamber tests were performed using one cylindrical and two tapered piles with different taper angles to investigate the changes of the bearing capacity of tapered piles with soil state and taper angle of piles. The results of calibration chamber tests show that the ultimate base resistance of tapered piles increases with increasing mean stress and relative density of soil. It also increases with increasing taper angle for medium sand, but with decreasing taper angle for dense sand. The ultimate shaft resistance of tapered piles increases as vertical and horizontal stresses, relative density and taper angle increase. Based on the results of model pile load tests, a new design method with shape factors for estimation of the bearing capacity of tapered piles is proposed considering the effect of soil state and taper angle on bearing capacity of tapered piles. In order to check the accuracy of predictions calculated using the new method, middle-scale field pile load tests were also conducted on cylindrical and tapered drilled shafts in clayey sand. Comparison of calculated values with measured ones shows that the new design method produces satisfactory predictions tor tapered piles.

Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Clay (지오그리드로 보강된 점성토사의 얕은 기초의 지지력)

  • Shin, Bang Woong;Das, Braja M.;Shin, Eun Chul;Chung, Kee Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1439-1444
    • /
    • 1994
  • Laboratory model test results for the ultimate bearing capacity and allowable bearing capacity at various settlement levels conducted on a strip foundation supported by geogrid-reinforced clay soil have been presented. For mobilization of the maximum possible load-carrying capacity, the optimum width and depth of the reinforcement layers, and the location of the first layer of reinforcement with respect to the bottom of the foundation have been determined.

  • PDF

Bearing Capacity of Strip Footing Adjacent on Cohesionless Slopes (비점착성 사면에 인접한 대상기초의 지지력)

  • Yu, Nam-Jae;Kim, Yeong-Gil;Jeon, Yeon-Jong
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-54
    • /
    • 1997
  • This paper is to investigate the bearing capacity and the failure mechanism of slope subjected to strip surcharges adjassent to embankment slope of sandy soil. Parametric model tests under plain strain condition were performed by changing width of footing, relative density of slope materials, and position of footing from the crest of slopes. For model tests, Jumunjin standard sand was used as the slope material and its relative density was 45% and 70%, respectively. The angle of slope was formed with 1 : 1.5 and 1 2. Rigid model footings, made of aluminuu were used with their widths of 4, 7, 10 and 12cm. For the position of model footing, position ratios, distance of model footing from the crest of slope divided by footing width, were 0, 0.5, 1, 2, 3, 4, 5. Failure mechanism was observed by using ink colored sands and markers inserted in model slopes. Ultimate bearing capacity obtained from tests was analyzed and compared with limit equilibrium method, limit analysis method and empirical equation. Characteristics of load-settlement curves and failure mechanism were also analyzed and compared with the existing theories. Thus, their effects on ultimate bearing capacity of model footing adjacent to slope were assessed.

  • PDF

Numerical Modeling of Reinforced Soil with Waste Tirecell (타이어셀로 보강된 지반의 거동에 대한 수치모델링)

  • Yoon, Yeowon;Kyeon, Kwangsoo;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.5-12
    • /
    • 2008
  • In this research, the plate load tests on sand which is reinforced by Tirecell mat were simulated by finite element method (FEM). Tirecell mat made by waste tires has the same function and similar shape to Geocell for soil reinforcement and it can also be used for civil engineering structure. The results were compared with those of field plate load tests for evaluation of suitability of modeling method. From the comparison of both results, it can be seen that the settlements by FEM were very similar to test results with small margin under the ultimate bearing capacity. For the ultimate bearing capacities of two results, difference was very small. After the confirmation of the modelling, reinforcing effects with variation of cover depth and number of reinforcement layers by Tirecell were analyzed additionally. Reinforcing effect decreases with increasing soil cover depth, and this is similar to previous test results by soil cover depth. As the number of reinforcing layers increased, reinforcing effect increased. However at more than 2 reinforcing layers, reinforcing effect was negligible. In conclusion, the modeling method in this research might be used for analysis of reinforced structures using Tirecell mat.

  • PDF