• Title/Summary/Keyword: ultimate flexural behavior

Search Result 286, Processing Time 0.026 seconds

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Ha Sang Hoon;Kim Jung Kyu;Hwang Keum Sik;Eo Seok Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • This paper presents flexural test results of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under static loading to investigate the effects of reinforcement ratio and compressive ,strength of concrete on cracking, deflection, ultimate capacity and mode of failure, This study attempts to establish a theoretical basis for the development of simple and rational design guideline. Test results show that ultimate capacity increases as the reinforcement ratio and concrete strength increase. The ultimate capacity increased up to $8\%-25\%$ by using high strength concrete. The deflection at maximum load of GFRP reinforced beams was about three times that of steel reinforced beams. For GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength -estimates.

  • PDF

Flexural Behavior of RC Arch Deck Subjected to Static Loading (철근콘크리트 아치 데크의 정적 휨 거동)

  • Eom, Gi-Ha;Yang, Dal-Hun;Kim, Sung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.371-378
    • /
    • 2017
  • In this study, the flexural behavior of the RC Arch Deck under static loading was evaluated. Flexural test was carried out using an actual size RC Arch Deck with a length of 2.5 m, a center thickness of 100 mm and an end thickness of 160 mm. The test results showed that it's ultimate load was 1.74 times higher than the ultimate design load. On the other hand, it showed that the flexural behavior has different behaviors (i.e. different stiffness). This type of structural behavior indicates that it has inter-dependency between the deck and the supporting girder. Therefore, it is necessary to confirm the precise behavior by the static loading test of the RC Arch Deck, excluding the girder effect in the future study. The overall results showed that RC Arch Deck has excellent structural performance due to the structural advantages of the arch shape. In the future, the RC Arch Deck can be applied as a long span slab.

Behavior of concrete-filled round-ended steel tubes under bending

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.457-472
    • /
    • 2017
  • The objective of this paper is to investigate the flexural behavior of concrete-filled round-ended steel tubes (CFRTs) under bending. Beam specimens were tested to investigate the mechanical behavior of the CFRTs, including four CFTs with different concrete strengths and steel ratios, and three CFRTs with varied aspect ratios. The load vs. deflection relationships and the failure modes for CFRTs were analyzed in detail. The composite action between the core concrete and steel tube was also discussed and examined based on the experimental results. In addition, ABAQUS program was used to develop the full-scale finite element model and analyze the effect of different parameters on the moment vs. curvature curves of the CFRTs bending about the major and minor axis, respectively. Furthermore, design formulas were proposed to estimate the ultimate moment and the flexural stiffness of the CFRTs, and the simplified theoretical model of the moment vs. curvature curves was also developed. The predicted results showed satisfactory agreement with the experimental and FE results. Finally, the differences of the experimental, FE and predicted results using the existing codes were illustrated.

Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement (전단보강에 따른 일방향 중공슬래브의 휨 성능 평가)

  • Yu, Yu-Jin;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate (CFRP로 보강된 철근콘크리트 보의 거동 특성)

  • Park, Jung-Yeol;Hwang, Seon-Il;Cho, Hong-Dong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • This paper presents the characteristics of flexural behavior of RC beam strengthened with CFRP(Carbon Fiber Reinforced Polymer Plate). Experimental variables included the strengthening length, width, reinforcement ratio, end anchorage and preloading corresponding to 75 percent of ultimate capacity and the effects according to each experimental variables were analyzed. To study, a total 21 RC beams were constructed, tested and the response of the beams in terms of ultimate load, deflection, strain of CFRP, failure mode were examined.

Design and ultimate behavior of RC plates and shells: two case studies

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.171-190
    • /
    • 2002
  • Two cases of design are performed for the hyperbolic paraboloid saddle shell (Lin-Scordelis saddle shell) and the hyperbolic cooling tower (Grand Gulf cooling tower) to check the design strength against a consistent design load, therefore to verify the adequacy of the design algorithm. An iterative numerical computational algorithm is developed for combined membrane and flexural forces, which is based on equilibrium consideration for the limit state of reinforcement and cracked concrete. The design algorithm is implemented in a finite element analysis computer program developed by Mahmoud and Gupta. The amount of reinforcement is then determined at the center of each element by an elastic finite element analysis with the design ultimate load. Based on ultimate nonlinear analyses performed with designed saddle shell, the analytically calculated ultimate load exceeded the design ultimate load from 7% to 34% for analyses with various magnitude of tension stiffening. For the cooling tower problem the calculated ultimate load exceeded the design ultimate load from 26% to 63% with similar types of analyses. Since the effective tension stiffening would vary over the life of the shells due to environmental factors, a degree of uncertainty seems inevitable in calculating the actual failure load by means of numerical analysis. Even though the ultimate loads are strongly dependent on the tensile properties of concrete, the calculated ultimate loads are higher than the design ultimate loads for both design cases. For the cases designed, the design algorithm gives a lower bound on the design ultimate load with respect to the lower bound theorem. This shows the adequacy of the design algorithm developed, at least for the shells studied. The presented design algorithm for the combined membrane and flexural forces can be evolved as a general design method for reinforced concrete plates and shells through further studies involving the performance of multiple designs and the analyses of differing shell configurations.

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

Combined membrane and flexural reinforcement design in RC shells and ultimate behavior (막응력과 휨을 고려한 RC 쉘의 설계와 극한거동)

  • 민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.405-411
    • /
    • 1998
  • An iterative numerical computational algorithm is presented to design a plate of shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i. e., for each sampling point, from the equilibrium between applied and internal forces. One case of design is performed for a hyperbolic paraboloid saddle shell (originally used by Lin and Scordelis) to check the design strength against a consistent design load, therefore, to verify the adequacy of design practice for reinforced concrete shells. Based on nonlinear analyses performed, the analytically calculated ultimate load exceeded the design ultimate load from 14-43% for an analysis with relatively low to high tension stiffening, ${\gamma}$ =5~20 cases. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

Proposal on the Prediction Equation of Ultimate stress of External Tendon for the Prestressed Concrete Beams with External Tendons (외부 PSC 보에서 외부강선의 극한 응력 예측식 제안)

  • Yoo, Sung-Won;Ha, Heon-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.44-53
    • /
    • 2010
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. However, in the domestic and abroad code, the equation of ultimate stress of external tendon is not suggested yet, and the equation of ultimate stress of internal unbonded tendon is used instead of that of external tendon. Therefore, in this paper, after effective variables of ultimate stress of external tendon were analyzed, the analytical equation of ultimate stress of external tendon was proposed. And the reasonable coefficients were proposed by statistical work of test results of 25 beam with external tendon. Finally, the practical proposed equation of ultimate stress of external tendon was proposed with analytical and statistical model. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of external tendons in analysis and design.