• Title/Summary/Keyword: ultimate elongation

Search Result 112, Processing Time 0.025 seconds

Mechanical Properties and Solid Lubricant Wear Behavior of MMCs Reinforced with a Hybrid of $Al_{2}O_{3}$ and Carbon Short Fibers (알루미나와 탄소단섬유를 혼합한 금속복합재료의 기계적 성질과 고체윤활 마모거동)

  • 송정일;봉하동;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.968-980
    • /
    • 1995
  • Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites are fabricated by the direct squeeze infiltration method. From the microstructure of Al/Al$_{2}$O$_{3}$/C composites, uniform distribution of reinforcements and good bondings are found. Optimum processing conditions for preforms and squeeze castings are suggested. Mechanical properties, such as elastic modulus, elongation, 0.2% offset yield strength and ultimate tensile strength are obtained. Through the abrasive were test and wear surface analsis, wear behavior and its mechanism of AC2B aluminum and Al/Al$_{2}$O$_{3}$/C composites can be characterized under various sliding speed conditions. Tensile strenght elongation of Al/Al$_{2}$O$_{3}$/C composites are decreased with increasing the addition of carbon fiber. On the contrary, elastic modulus of Al/Al$_{2}$O$_{3}$/C composites is slightly improved compared with that of the unreinforced matrix alloy. The addition of carbon fiber to al/al$_{2}$O$_{3}$/C composites gives rise to improvement of the wear resistance. Specially, carbon chopped fibers play an important role in interfering sticking between the counter material and metal matirix composites. Al/Al$_{2}$O$_{3}$/C composites are suitable to high speed due to solid lubication of carbon. And wear model of Al/Al$_{2}$O$_{3}$/C composites is suggested by the examination of worn surfaces.

Effects of Salinity on Leaf Growth and Photosynthesis in Rice (염처리가 수도잎의 신장 및 광합성능에 미치는 영향)

  • Lee, Kang-Sae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.22-33
    • /
    • 1991
  • The studies aimed to distinguish between initial (ionic or osmotic) effects of salinisation on growth and the longer-term consequences of excessive salt accumulation. Tall and dwarf varieties of rice were used to provide different growth rates. There was no significant effect upon the day-to-day pattern of growth, upon the ultimate length of leaves that were developing at the time of, or shortly after, salinisation with 50 mM NaCl. Leaves that developed after prolonged exposure of the plants to salinity were shorter. Addition of NaCl, KCl or mannitol to the root medium brought about a cessation of leaf elongation within one minute. Growth at a reduced rate restarted abruptly after a lag period that depended upon the external concentration. Elongation rate recovered to its original value within 24 hours after exposure to 50 mM NaCl, though not at higher concentrations. Addition of NaCl at concentrations up to 100 mM elicited no short-term effect upon photsynthetic gas exchange. No change in turgor pressure was detectable in the growing zone with the resolution of the miniature pressure probe used (about 70 kPa). It is concluded that the initial growth reduction in rice caused by salinisation is due to a limitation of water supply. A clear distinction is made between the initial effects of salt which are recoverable, and the long-term effects which result from the accumulation of salt within expanded leaves.

  • PDF

Improving the Formability of an SUS316 Plate using Laser-induced Surface Heat Treatment and Cladding Processes (레이저 기반 표면 열처리 및 클래딩을 이용한 SUS 316 판재 성형성 향상)

  • Jo, Yeong-Kwan;Yu, Jae-Hyun;Jeong, Ho-Seung;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • We propose a practical method for increasing formability of a sheet metal plate using laser heat treatment (LHT) and cladding process. In this work, two kinds of process such as laser-induced heat treatment and cladding were utilized to evaluate the effect on formability of SUS316 sheets with different thickness of 1 and 3 mm. By using a vertically line-patterned tensile specimen that was LHTed or cladded on its surface, the process parameters of each surface treating method were studied and optimized. Through the basic test, we knew that the laser power of 900 W and scanning speed of 500 mm/min was the best condition for increase of formability. As the treatment results, ultimate tensile strength and elongation were increased as approximately 2.1 and 7.0%, respectively. To verify the usefulness of this work in industrial cases, we conducted a bulging test using with and without LHTed SUS316 sheet metal blanks. The results show that the bulging height of LHTed sheet was increased by 73% compared to that of the original one.

Microstructure and Tensile Properties in Low Pressure Cast Al-Si Alloy through Cooling Rate Control

  • Suh, Jun-Young;Park, Sung Jin;Lee, Hee-Kwon;Chang, Si Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • In this study, three kinds of metal chills such as SS400, AC4CH and brass, with different thicknesses of 40 ~ 80 mm, were applied for low pressure casting of Al-Si alloy to control cooling rate. The microstructural characteristics with increasing cooling rate were represented using factors including D1, D2, size of primary α phases and shape factor and size of eutectic Si. The tensile properties were investigated and additionally analyzed based on the microstructural characteristics. As the cooling rate increased, D1, D2, and sizes of primary α phases and eutectic Si apparently decreased and the shape factor of eutectic Si increased to over 0.8. The ultimate tensile strength (UTS) and yield strength (YS) increased with decreasing D1, D2, and size of primary α phases, while elongation increased with decreasing size of eutectic Si and concurrently increasing shape factor of eutectic Si. This indicated that the primary α phases and eutectic Si in Al-Si alloy were refined with increasing cooling rate, resulting in improvement of UTS and YS without sacrificing elongation. After the tensile test, preferential deformation of primary α phases was observed in the Al-Si alloy produced at higher cooling rates of more than 0.1 K/s.

SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY (주조 형상기억 니켈-티타늄 합금의 초탄성)

  • Choi, Dong-Ik;Choie, Mok-Kyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

A Study on Plastic Fatigue of Structural Steel Elements under Cyclic Loading (반복하중을 받는 강구조 요소의 소성피로에 관한 연구)

  • Park, Yeon Soo;Park, Sun Joon;Kang, Sung Hoo;Yoon, Young Phil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.193-204
    • /
    • 1997
  • In order to quantify the relationships of the important physical factors relating failure to strong earthquake loading, the plastic fatigue problems for structural components under repeated loading were reviewed first. A new concept of very low cycle fatigue failure for structural components under severe cyclic excitations as in strong earthquakes was represented. Also, an experimental study was made of the very low cycle fatigue failure of structural steel elements. It was attempted to realize the ultimate failure in the course of loading repetitions of the order of several to twenty. The test specimen had a form of rectangular plate, representing a thin-plated element in a steel member as wide-flange cross section. It was subjected to uniaxial loading repeatedly, until complete failure takes place after undergoing inelastic buckling, plastic elongation and/or their combination. It was seen as a result that the state of the ultimate failure is closely related to the maximum strain at the extreme fiber in the cross section.

  • PDF

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

Characteristics of Fatigue Crack Propagations with Respect to Loading Directions in Butt-Welded Steel Plates with the Same Direction of Rolling and Welding Bead (압연 및 용접방향이 같은 맞대기 용접강판의 하중방향에 따른 피로균열 진전특성)

  • Lee Yong-Bok;Kim Sung-Yeup;Oh Byung-Duck
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.37-42
    • /
    • 2005
  • Most of the welding steel plate structures have complicated mechanical problems such as rolling directional characteristics and residual stresses caused by manufacturing process. For the enhancement of reliability and safety in those structures, therefore, a systematic investigation is required. SS400 steel plate used for common structures was selected and welded by FCAW butt-welding process for this study, and then it was studied experimently about characteristics of fatigue crack propagations with respect to rolling direction and welding residual stress of welded steel plates. When the angles between rolling direction and tensile loading direction in base material are increased, their ultimate strength not show a significant difference, but yielding strength are increased and elongations are decreased uniformly. It is also shown that fatigue crack growth rate can be increased from those results. When the angles between welding bead direction and loading direction in welded material are increase, fatigue crack growth rate of them are decreased and influenced uniformly according to the conditions of residual stress distribution. In these results, it is shown that the welded steel plate structures are needed to harmonize distributed welding residual stress, rolling direction and loading direction fur the improvement of safety and endurance in manufacture of their structures.

Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates (강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성)

  • Lee Yong-Bok;Oh Byung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

Processing and Properties of Engine Valve-shaped TiAl-Mn Intermetallics by Reactive Sintering (반응소결법에 의해 엔진밸브 형상으로 제조한 TiAl-Mn 금속간화합물의 특성)

  • 김영진
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.243-251
    • /
    • 1997
  • Engine valve-shaped TiAl-Mn intermetallics containing 43.5 to 47.5at%Al (Mn/Al=0.036) are successively fabricated by reactive sintering the elemental powder mixtures near-net shaped by extrusion and die forging. A duplex structure consisted of lamellar grains and equiaxed $\gamma$ grains is developed for all compositions, and the areal fraction of the lamellar grains(or equiaxed $\gamma$ grains) decreases (or increases) with increasing Al content. As Al content increased, the elongation increases with accompanying decrease in yield strength and ultimate tensile strength at both room temperature and 80$0^{\circ}C$. This indicates that the suitable composition is Ti-45at%Al-1.6at%Mn in considering the balance of ambient and elevated tensile properties. The reactive-sintered Ti-45Al-1.6Mn alloy shows superior oxidation resistance not only to the plasma arc melted one but also to the heat resistance steel STR35(representative exhaust valve head material for automotive engine). The reactive-sintered Ti-45Al-1.6Mn alloy coated with an oxidizing scale exhibits a better wear resistance than induction hardened martensitic steel STR11(representative exhaust valve tip material for automotive engine).

  • PDF