• Title/Summary/Keyword: ultimate elongation

Search Result 111, Processing Time 0.025 seconds

Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques (주조, 3-D printing을 활용한 laser sintered 및 CAD/CAM milled 기법을 이용하여 제작된 코발트-크롬 합금의 물리적 성질 및 파절 단면 관찰 비교 연구)

  • Choi, Yun-Jung;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Ahn, Jin-Soo;Park, Dong-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Purpose: The purpose of present study is to compare mechanical properties and microstructural characteristics of fractured surface for cast, 3-D printing laser sintered and CAD/CAM milled cobalt-chromium (Co-Cr) alloy specimens and to investigate whether laser sintered technique is adequate for dental applications. Materials and methods: Thirty six flat disc shape Co-Cr alloy specimens were fabricated for surface hardness test and divided into three groups according to the manufacturing methods; 12 specimens for casting (n=12), 12 specimens for laser sintered technology (n=12) and 12 specimens for milled technology (n=12). Twelve dumbbell shape specimens for each group were also fabricated for a tensile test. Statistical comparisons of the mechanical properties for the alloys were performed by Kruskal-Wallis test followed by Mann-Whitney and Bonferroni test. The microstructural characteristics of fractured surfaces were examined using SEM. Results: There were significant differences in the mean Vickers hardness values between all groups and the cast specimen showed the highest (455.88 Hv) while the CAD/CAM milled specimen showed the lowest (243.40 Hv). Significant differences were found among the three groups for ultimate tensile strength, 0.2% yield stress, elongation, and elastic modulus. The highest ultimate tensile strength value (1442.94 MPa) was shown in the milled group and the highest 0.2% yield strength (1136.15 MPa) was shown in the laser sintered group. Conclusion: Different manufacturing methods influence the mechanical properties and microstructure of the fractured surfaces in Co-Cr alloys. The cast Co-Cr alloy specimens showed the highest Vickers hardness, and the CAD/CAM milled specimens revealed the highest tensile strength value. All alloys represent adequate mechanical properties satisfying the ISO standards of dental alloy.

Production and Mechanical Properties of Mg-Zn-Ce Amorphous Alloys by Dispersion of Ultrafine hcp-Mg Paticles (hcp-Mg 입자분산형 Mg-Zn-Ce계 비정질합금의 제조와 기계적 성질)

  • Kim, Seong-Gyu;Park, Heung-Il;Kim, U-Yeol;Jo, Seong-Myeong;Kim, Yeong-Hwan;Inoue, A.;Masumoto, T.
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.847-854
    • /
    • 1994
  • An amorphous single phase and coexistent amorphous and hcp-Mg phases in Mg-Zn-Ce system were found to form in the composition ranges of 20 to 40% Zn, 0 to 10% Ce and 5 to 20% Zn, 0 to 5% Ce, respectively. A $Mg_{85}Zn_{12}Ce_{3}$ amorphous alloy containing nanoscale hcp-Mg particles was found to form either by melt spinning or by heat treatment of melt -spun ribbon. The particle size of the hcp-Mg phase can be controlled in the range of 4 to 20 nm. The mixed phase alloy prepared thus has a good bending ductility and exhibits high ultimate tensile strength($\sigma_{B}$) ranging from 670 to 930 MPa and fracture elongation($\varepsilon_{f}$) of 5.2 to 2.0%. The highest specific strength($\sigma_{B}$/density =$\sigma_{s}$)$3.6 \times 10^5N \cdot m/kg$. It should be noted that the highest values of flB, US and ?1 are considerably higher than those (690MPa,$2.5 \times 10^5N \cdot m/kg$and 2.5%) for amorphous Mg-Zn-Ce alloys. The increase of the mechanical strengths by the formation of the mixed phase structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition.

  • PDF

Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method (레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질)

  • Oh, Jung-Ran;Lee, Seok-Hyung;Woo, Yi-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

Mechanical Properties and Microstructural Analysis of Sn-40Bi-X Alloys (Sn-40Bi-X 합금의 기계적 물성과 미세조직 분석)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Hyun, Chang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.79-79
    • /
    • 2010
  • 저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점: $138^{\circ}C$) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여 $10^{-2}$, $10^{-3}$, $10^{-4}\;s^{-1}$의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나, $10^{-2}\;s^{-1}$의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커 $10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나, $10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는 $\beta$-Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다.

  • PDF

Evaluation of Mechanical Properties of Extruded Magnesium Alloy Joints by Friction Stir Welding : Effect of Welding Tool Geometry (마찰교반용접 툴 변화에 따른 마그네슘 합금 압출 판재 마찰교반용접부 기계적 물성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.280-288
    • /
    • 2016
  • This study proposes improved welding tools for magnesium alloys. Two types of tools were used for friction stir welding (FSW). The effect of the welding tools on the FSW joints was investigated with a fixed welding speed of 200mm/min and various rotation speeds of 400 to 800 rpm. After FSW, the joints were cross-sectioned perpendicular to the welding direction to investigate the defects. A tensile test and Vickers hardness test were conducted to identity the mechanical properties of the joints. Defects were observed when the rotation speed was 400 rpm, regardless of the welding tool, and the amount of defects tended to decrease with increases in rotational speed. Defect-free welds were obtained when the rotation speed was 800 rpm. The best weld quality was acquired using the C type welding tool. The rotation speed of 800 rpm and welding speed of 200 mm/min produced the best joining properties. The ultimate tensile strength, yield strength, and elongation of the welded region were 90.0%, 69.1%, and 83.2% those of the base metal, respectively.

Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel (핫스탬핑용 30MnB5강의 템퍼링 조건에 따른 미세조직 및 기계적 물성 연구)

  • Jeong, Junyeong;Park, Sang-Cheon;Shin, Ga-Young;Lee, Chang Wook;Kim, Tae-Jeong;Choi, Min-Su
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.787-795
    • /
    • 2018
  • The effects of tempering condition on the microstructure and mechanical properties of 30MnB5 hot stamping steel were investigated in this study. Before the tempering, hot-stamped 30MnB5 steel was composed of only ${\alpha}^{\prime}$-martensite microstructure without precipitates. After the tempering at $180^{\circ}C$ for 120 min, nano-sized ${\varepsilon}$-carbides were precipitated in the ${\alpha}^{\prime}$-martensite laths. After tempering at $250^{\circ}C$ for 60 min, cementite was precipitated along the ${\alpha}^{\prime}$-martensite lath boundaries. The cementite was also observed in the specimens tempered at $350^{\circ}C$ for 30 min and $450^{\circ}C$ for 6 min, respectively. The globular ${\alpha}$-ferrite appeared at $350^{\circ}C-30min$ tempering, and the volume fraction of ${\alpha}$-ferrite increased when the tempering temperature was increased. The yield strength increased after tempering, and it reached a peak with the tempering condition of $180^{\circ}C-120min$, due to the nano-sized precipitates in the ${\alpha}^{\prime}$-martensite lath. After the tempering, the steel's ultimate tensile strength (UTS) was decreased due to the reduction in dislocation density and C segregation to lath boundaries. The highest elongation was observed at the $180^{\circ}C-120min$ tempering condition, due to the reduction of residual stress, and the lack of precipitates along the lath boundaries. The $180^{\circ}C-120min$ tempering condition was considered to have outstanding crash performance, according to toughness and anti-intrusion calculation results. In drop tower crash tests, the 30MnB5 door impact beam tempered at $180^{\circ}C$ for 120 min showed better crash performance compared to a 22MnB5 door impact beam.

Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys (Al-xSi 합금의 인장특성에 미치는 공정 Si 입자의 파단과 미소기공율의 영향)

  • Lee, ChoongDo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.434-444
    • /
    • 2021
  • This study investigated the overall dependence of the tensile properties of Al-Si alloys on the distribution aspect of a eutectic Si particle in terms of defect susceptibility to the effective void area fraction, referring to the sum of pre-existing microvoids and the damage evolution of the Si particle. The network morphology of as-cast Al-xSi (x=2,5,8,11) alloys was modified to a granular type via a T4 treatment, after which a computational topography (CT) analysis and scanning electron microscope (SEM) observations were utilized to evaluate the size and distribution of the microvoids. The CT and SEM analyses indicated that the main cracks grow along local regions that possess the highest porosity level. The local plastic deformation around the microvoids and the distribution aspect of the microvoids induced a practical difference between the iso-volumetric CT measurement and the SEM fractography outcomes. The results demonstrated that the overall dependence of the ultimate tensile strength (UTS) and elongation on the effective void area fraction is more sensitive to the variation of the area fraction of the Si particle in the network morphology than in the granular type; this is due to the sequential damage evolution of the neighboring Si particles in the eutectic Si colony.

Effect of vacuum annealing and characterization of diecast ADC12 aluminum alloys (다이캐스팅 공정으로 제조한 ADC12 알루미늄 합금의 물성 향상 및 진공 열처리 효과)

  • Jo, Jihoon;Ham, Daseul;Oh, Seongchan;Cha, Su Yeon;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • We report structural, mechanical, and thermal properties of diecast ADC12 aluminum alloys characterized using synchrotron X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray (EDX) analysis, thermal conductivity (λ), Vickers hardness (Hv), and stress-strain measurements. We also studied the effect of post-annealing performed in a vacuum atmosphere on the mechanical properties of diecast ADC12 alloys. EDX and XRD results revealed that Al2Cu and AlCu3 grains are formed, well dispersed in Al base and highly crystalline. Ultimate tensile strength (UTS) of 307.9 ± 9.1 MPa and elongation of 2.98 ± 0.62 % were estimated. λ was 129.3 ± 0.27 W/m·K and Hv was approximately 130. Both values were significantly higher than the reported values. At annealing temperatures ranging from 25 to 200℃, UTS and Hv values remained constant, while as the annealing temperature increased to 500℃, these values gradually decreased. This is because stabilization of the microstructure improves toughness and ductility.

Investigation on Resistance to Hydrogen Embrittlement of High Nitrogen Austenitic Steels for Hydrogen Pipe by the Disc Pressure Test and the Tensile Test on Hydrogen Pre-charged Specimens (디스크 시험 및 수소처리 인장시험에 의한 수소배관용 고질소 스테인리스강의 내수소취성 평가 연구)

  • Dong-won, Shin;Min-kyung, Lee;Jeong Hwan, Kim;Ho-seong, Seo;Jae-hun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.16-23
    • /
    • 2022
  • In this study, characteristics of effect on hydrogen gas was investigated to hydrogen embrittlement by disk and tensile tests. The developed and commercial alloy was fabricated to a plate material made from an alloy ingot. The prepared materials were processed in the form of a disk to measure rupture pressure by hydrogen and helium gas at a rate of 0.1 to 1,000 bar/min. In the hydrogen pre-charged tensile test, a specimen was hydrogenated using an anode charging method, and the yield strength, ultimate tensile strength, elongation, and reduction in area rate were carried by a strain rate test. Also, the microstructure was observed to the fracture surface of the tensile test specimen. As a result, the developed materials satisfied endurable hydrogen embrittlement, and the fractured surface showed a brittleness fracture surface with a depth of several ㎛, but dimple due to ductile fracture could be observed.

Development and Applicability Evaluation of High Performance Poly-urea for RC Construction Reinforcement (RC 구조물 보강을 위한 고성능 폴리우레아의 개발 및 적용성 평가)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Hong-Shick;Heo, Gweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.169-176
    • /
    • 2010
  • Generally, poly-urea is widely used as waterproof coating material due to its superior adhesiveness, elongation capacity, and permeability resistance. In addition, it can be quickly and easily applied on structure surfaces using spray application. Since it hardens in about 30 seconds after application, its construction efficiency is very high and its usage as a special functional material is also excellent. However, currently, poly-urea is mostly used as waterproof coating material and the researches on its usage as a retrofitting material is lacking at best. Therefore, basic studies on the use of poly-urea as a general structural retrofitting material are needed urgently. The objective of this study is to develop most optimum poly-urea composition for structure retrofitting purpose. Moreover, the structural strengthening capacity of the developed poly-urea is evaluated through flexural capacity experiments on RC beams and RC slabs. From the results of the flexural test of poly-urea strengthened RC beam and slab specimens, the poly-urea and concrete specimen showed monolithic behavior where ductility and ultimate strength of the poly-urea strengthened specimen showed slight increase. However, the doubly reinforced specimens with FRP sheet and poly-urea showed lower capacity than that of the specimen reinforced only with FRP sheet.