• Title/Summary/Keyword: ultimate drift angle

Search Result 3, Processing Time 0.018 seconds

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

A Study about Behavior of Steel Column Members under Varying Axial Force (변동축력에 의한 철골기둥부재의 거동에 관한 연구)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Park, Hae-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • The performance-based design is highlighted as an alternative for the current design method, which cannot definitely specify the performance level that a building requires. Research on it is already in progress, however, in developed countries like the United States and Japan, to establish the basis for a performance-based design. Many studies on such design are also being conducted in South Korea, but South Korea still lags behind other countries in all-around technology. On the other hand, the column members, especially the lower external column, are affected by the variation of the axial force by overturning the moments in the case of lateral loads by earthquake. Varying the axial force can affect the time of local buckling and the ultimate behavior. Thus, in this study, the structural performance, such as the time of local buckling and the ultimate behavior, was analyzed through an experimental study on column members under varying axial force. The feasibility of a domestic study proposing a performance level with a story drift angle formed about a structural-performance-based steel structure design was also verified.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.