• 제목/요약/키워드: ubiquitin-mediated degradation

검색결과 45건 처리시간 0.025초

유비퀴틴화에 의한 세포 내 p53의 기능 조절 (Regulation of cellular functions of p53 by ubiquitination)

  • 정진혁;이준영;이선미;최태부;안성관
    • KSBB Journal
    • /
    • 제24권3호
    • /
    • pp.217-226
    • /
    • 2009
  • p53은 전사인자로서 세포의 사멸이나 세포주기 조절 등 다양한 세포 활성을 보이기 때문에 일반적인 환경에서는 매우 낮은 수준으로 단백질 양이 확인된다. p53의 단백질 양과 활성은 다양한 세포 내 신호에 의하여 이루어지는 후전사 변형을 통하여 조절 받는다. 이중 유비퀴틴화는 세포 내에서 p53 단백질의 발현 수준이 낮게 유지되는 것이 가능하게 하는 대표적인 기전이다. 이러한 기전을 일으키는 대표적인 p53의 E3 ligase로는 mdm2, Pirh2, COP1, ARF-BP1 등이 보고되어 있으며, 각각 negative feedback loop나 다른 기전을 통하여 p53 단백질의 분해를 유도하여 세포의 항상성을 조절한다. 이 밖에도 p53은 mdm2나 WWP1, UBC13, MSL2와 같은 E3 ligase로 인해서 모노 유비퀴틴화 되고, p53의 세포 내 위치가 조절되어 전사인자로서의 활성이 억제된다. p53의 세포 내 위치와는 관계없이 p53의 전사인자로써의 활성 또한 아세틸화와 유비퀴틴화의 경쟁적 반응으로 인해 조절 될 수 있다. E4F1에 의한 유비퀴틴화는 세포주기와 관련된 유전자의 발현을 증가시키되 세포사멸 관련 유전자의 발현은 감소시키는 것으로 보아 p53의 수많은 downstream gene의 발현 또한 유비퀴틴화를 통해 조절 될 수 있음이 제시되었다. 앞으로의 연구는 신규 E3 ligase에 의한 p53의 유비퀴틴화 기전 연구 뿐 아니라 이와 관련된 다른 변형과의 관계에 대한 연구 또한 매우 중요하게 부각되어 질 것으로 예상된다.

Nuclear Localization of Chfr Is Crucial for Its Checkpoint Function

  • Kwon, Young Eun;Kim, Ye Seul;Oh, Young Mi;Seol, Jae Hong
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.359-363
    • /
    • 2009
  • Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.

Tyrosine 1045 Codon Mutations in Exon 27 of EGFR are Infrequent in Oral Squamous Cell Carcinomas

  • Tushar, Mehta Dhaval;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4279-4282
    • /
    • 2013
  • Background: The activation and inactivation of receptor tyrosine kinases are tightly regulated to ensure faithful replication of cells. After having transduced extracellular growth activating signals, activated EGFR is subjected to downregulation either by clathrin mediated endocytosis or c-Cbl mediated proteasome degradation depending on the ligand concentration. c-Cbl is an ubiquitin ligase which requires a phosphorylated tyrosine residue at position 1045 in the cytoplasmic domain of EGFR to interact and add ubiquitin molecules. While activating mutations in exons 19 and 21 have been associated with the development of several cancers, the status of mutations at tyrosine 1045 coding exon 27 of EGFR remain to be investigated. Consistently, defective phosphorylation at 1045 has been associated with sustained phosphorylation of EGFR in non-small lung carcinomas. Hence in the present study we investigated the genetic status of the tyrosine 1045 coding site within exon 27 of EGFR gene to explore for possible occurrence of mutations in this region, especially since no studies have addressed this issue so far. Materials and Methods: Tumor chromosomal DNA isolated from thirty five surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking the tyrosine 1045 coding exon 27 of EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Sequence analysis identified no mutations in the tyrosine 1045 codon of EGFR in any of the thirty five samples that were analyzed. Conclusions: The lack of identification of mutation in the tyrosine 1045 codon of EGFR suggests that mutations in this region may be relatively rare in oral squamous cell carcinomas. To the best of our knowledge, this study is the first to have explored the genetic status of exon 27 of EGFR in oral squamous cell carcinoma tissue samples.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases

  • Im, Eunju;Chung, Kwang Chul
    • BMB Reports
    • /
    • 제49권9호
    • /
    • pp.459-473
    • /
    • 2016
  • Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs.

Autophagy down-regulates NLRP3-dependent inflammatory response of intestinal epithelial cells under nutrient deprivation

  • Yun, Yewon;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.260-265
    • /
    • 2021
  • Dysregulation of inflammation induced by noninfectious stress conditions, such as nutrient deprivation, causes tissue damage and intestinal permeability, resulting in the development of inflammatory bowel diseases. We studied the effect of autophagy on cytokine secretion related to intestinal permeability under nutrient deprivation. Autophagy removes NLRP3 inflammasomes via ubiquitin-mediated degradation under starvation. When autophagy was inhibited, starvation-induced NLRP3 inflammasomes and their product, IL-1β, were significantly enhanced. A prolonged nutrient deprivation resulted in an increased epithelial mesenchymal transition (EMT), leading to intestinal permeability. Under nutrient deprivation, IL-17E/25, which is secreted by IL-1β, demolished the intestinal epithelial barrier. Our results suggest that an upregulation of autophagy maintains the intestinal barrier by suppressing the activation of NLRP3 inflammasomes and the release of their products, including pro-inflammatory cytokines IL-1β and IL-17E/25, under nutrient deprivation.

Atg3-Mediated Lipidation of Atg8 Is Involved in Encystation of Acanthamoeba

  • Moon, Eun-Kyung;Chung, Dong-Il;Hong, Yeon-Chul;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제49권2호
    • /
    • pp.103-108
    • /
    • 2011
  • Autophagy is a catabolic process involved in the degradation of a cell's own components for cell growth, development, homeostasis, and the recycling of cellular products. Autophagosome is an essential component in the protozoan parasite during differentiation and encystation. The present study identified and characterized autophagy-related protein (Atg) 3, a member of Atg8 conjugation system, in Acanthamoeba castellanii (AcAtg3). AcAtg3 encoding a 304 amino acid protein showed high similarity with the catalytic cysteine site of other E2 like enzymes of ubiquitin system. Predicted 3D structure of AcAtg3 revealed a hammer-like shape, which is the characteristic structure of E2-like enzymes. The expression level of AcAtg3 did not increase during encystation. However, the formation of mature cysts was significantly reduced in Atg3-siRNA transfected cells in which the production of Atg8-phosphatidylethanolamine conjugate was inhibited. Fluorescent microscopic analysis revealed that dispersed AcAtg3-EGFP fusion protein gathered around autophagosomal membranes during encystation. These results provide important information for understanding autophagic machinery through the lipidation reaction mediated by Atg3 in Acanthamoeba.

Tamoxifen Suppresses Clusterin Level through Akt Inactivation and Proteasome Degradation in Human Prostate Cancer Cells

  • Shim, Jae-Ho;Choi, Chang-Su;Lee, Eun-Chang;Kim, Mie-Young;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.25-31
    • /
    • 2009
  • Clusterin is a heterodimeric sulfated glycoprotein and plays a role in many different types of cancer as a cell survival factor and helps cancerous cells to evade stress-induced apoptosis. To investigate whether the regulation of clusterin expression is involved in the mechanism of anticancer agent, we studied the effect of tamoxifen on clusterin expression in human prostate cancer PC-3 cells. Treatment of PC-3 cells with tamoxifen reduced cellular proliferation. Western blot analyses showed that treatment with tamoxifen suppressed clusterin expression in a concentration-dependent manner. Transfection with clusterin siRNA plasmid showed that clusterin is required for PC-3 cell survival. We found that tamoxifen resulted in a rapid decrease in the phosphorylation of Akt on Ser473 leading to prevent kinase activity. Expression of myristoylated Akt prevented tamoxifen-mediated clusterin downregulation. Interestingly, MG132, a wellknown proteasome inhibitor also recovered clusterin expression suppressed by tamoxifen. These data indicate that clusterin expression may be regulated by activation of Akt and ubiquitin-proteasome pathway plays an important role in tamoxifen-mediated clusterin suppression.

p62, a Phosphotyrosine Independent Ligand of SH2 Domain of $p56^{Ick}$, is Cleaved by Caspase-3 during Apoptosis in Jurkat Cells

  • Joung, Insil
    • Animal cells and systems
    • /
    • 제5권2호
    • /
    • pp.145-151
    • /
    • 2001
  • p62 is a phosphotyrosine-independent ligand of the SH2 domain of $p56^{Ick}$, a T-cell specific Src family tyrosine kinase. Recently p62 has been shown to interact with a number of proteins, such as $PKC\varsigma$ and ubiquitin, and implicated in important cellular functions such as cell proliferation. Since the two p62 interacting proteins, $p56^{Ick}$ and $PKC\varsigma$, have been reported to play roles in cell death, 1 have addressed the potential role of p62 during apoptosis in Jurkat cells in this study. Herein 1 show that p62 was specifically cleaved into two peptides by a caspase-3-like activity during Fas-receptor mediated apoptosis in Jurkat cells. This cleavage generated two fragments with molecular weights of about 35 kDa that differed in subcellular localizations. The N-terminal cleaved fragment was present in the detergent-insoluble fraction whereas the C-terminal fragment was found in the detergent-soluble fraction. In addition, the C-terminal fragment appeared to be subjected to further degradation as apoptosis prolonged. Moreover, overexpression of p62 in Jurkat cells attenuated the Fas receptor mediated apoptosis, suggesting that p62 is involved in apoptotic signal transduction pathway in lymphocytes.

  • PDF

SIRT1 inhibitor에 의한 Hsp90 inhibitor의 Hsp90 샤페론 기능 억제 및 항암제 내성세포의 Hsp90 inhibitor에 대한 세포독성 증강 (SIRT1 Inhibitor Enhances Hsp90 Inhibitor-mediated Abrogation of Hsp90 Chaperone Function and Potentiates the Cytotoxicity of Hsp90 Inhibitor in Chemo-resistant Human Cancer Cells)

  • 문현정;이수훈;김학봉;이경아;강치덕;김선희
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.826-834
    • /
    • 2016
  • 본 연구는 Hsp90 inhibitor 및 SIRT1 inhibitor의 병용처리가 항암제 다제내성(MDR) 인간 암세포의 증식 억제에 효과적임을 밝혔다. SIRT1 활성 억제가 Hsp90 inhibitor인 17-AAG의 세포 독성의 효과를 증강시켰으며, 이로 인해 Hsp90 inhibitors에 대한 내성을 극복시킬 수 있음을 인간 자궁암세포인 HeyA8의 MDR 변이주인 HeyA8- MDR 세포에서 확인하였다. SIRT1 inhibitor는 Hsp90 inhibitor에 의한 Hsp90 샤페론 기능 억제를 증강시키며, ubiquitin ligase CHIP의 발현 증강을 유발하여, Hsp90 client protein 인 mutant p53 (mut p53)의 분해를 촉진시킨다. Mut p53 의 발현 감소는 암세포의 Hsp90 inhibitor 내성 획득의 가장 중요한 원인으로 지적되는 heat shock factor 1 (HSF1)/heat shock proteins (Hsps)의 발현 억제와 관련됨을 알 수 있었으며, 이는 항암제 다제내성 세포에서 SIRT1 inhibitor에 의하여 Hsp90 inhibitor에 대한 감수성이 증강되는 분자적 기전임을 밝혔다. 그러므로, SIRT1 억제에 의한 mut p53/HSF1 발현 감소가 MDR 암세포의 Hsp90 inhibitors 내성 극복에 매우 유효함을 시사하는 결과를 얻었다.