• Title/Summary/Keyword: u-robot test bed

Search Result 2, Processing Time 0.017 seconds

Face Recognition Using Tensor Subspace Analysis in Robot Environments (로봇 환경에서 텐서 부공간 분석기법을 이용한 얼굴인식)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.300-307
    • /
    • 2008
  • This paper is concerned with face recognition for human-robot interaction (HRI) in robot environments. For this purpose, we use Tensor Subspace Analysis (TSA) to recognize the user's face through robot camera when robot performs various services in home environments. Thus, the spatial correlation between the pixels in an image can be naturally characterized by TSA. Here we utilizes face database collected in u-robot test bed environments in ETRI. The presented method can be used as a core technique in conjunction with HRI that can naturally interact between human and robots in home robot applications. The experimental results on face database revealed that the presented method showed a good performance in comparison with the well-known methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in distant-varying environments.

  • PDF

Development of Optimized Headland Turning Mechanism on an Agricultural Robot for Korean Garlic Farms

  • Ha, JongWoo;Lee, ChangJoo;Pal, Abhishesh;Park, GunWoo;Kim, HakJin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.273-284
    • /
    • 2018
  • Purpose: Conventional headland turning typically requires repeated forward and backward movements to move the farming equipment to the next row. This research focuses on developing an upland agricultural robot with an optimized headland turning mechanism that enables a $180^{\circ}$ turning positioning to the next row in one steering motion designed for a two-wheel steering, four-wheel drive agricultural robot named the HADA-bot. The proposed steering mechanism allows for faster turnings at each headland compared to those of the conventional steering system. Methods: The HADA-bot was designed with 1.7-m wide wheel tracks to travel along the furrows of a garlic bed, and a look-ahead path following algorithm was applied using a real-time kinematic global positioning system signal. Pivot turning tests focused primarily on accuracy regarding the turning radius for the next path matching, saving headland turning time, area, and effort. Results: Several test cases were performed by evaluating right and left turns on two different surfaces: concrete and soil, at three speeds: 1, 2, and 3 km/h. From the left and right side pivot turning results, the percentage of lateral deviation is within the acceptable range of 10% even on the soil surface. This U-turn scheme reduces 67% and 54% of the headland turning time, and 36% and 32% of the required headland area compared to a 50 hp tractor (ISEKI, TA5240, Ehime, Japan) and a riding-type cultivator (CFM-1200, Asia Technology, Deagu, Rep. Korea), respectively. Conclusion: The pivot turning trajectory on both soil and concrete surfaces achieved similar results within the typical operating speed range. Overall, these results prove that the pivot turning mechanism is suitable for improving conventional headland turning by reducing both turning radius and turning time.