• Title/Summary/Keyword: u-Farm Architecture

Search Result 4, Processing Time 0.015 seconds

Development of u-Farm Information Architecture and Information Management Technology based on RFID/USN for the Agricultural Sector (RFID/USN 기반 농업분야 u-IT 적용을 위한 u-Farm 정보 아키텍처 및 정보 관리기술 개발)

  • Ryu, Seungwan;Park, Sei-Kwon;Oh, Dongok;Kang, Young-Jun;Park, You-Jin;Shin, Dong-Cheon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • Generally, because individual agricultural product possesses its own distinctive characteristics and shows different characteristics at each stage of the agricultural supply chain, it is necessary to develop a proper enterprise architecture for managing information system. In this paper, we propose an enterprise architecture based on RFID/USN technology that can be used as a reference enterprise architecture for u-IT application in the agriculture sectors, which is called the u-Farm enterprise architecture with taking heterogeneous characteristics of agricultural products into account for. In addition, we also developed the RFID/USN middleware platform as a core infrastructure technology. Fo evaluation of the performance of the proposed u-Farm architecture and the RFID/USN middleware platform, the field-trial evaluation at the apple Agricultural Processing Center (APC) has been executed and the results shows that the proposed architecture and platform perform well in terms of information integration over the whole SCM process from the farming stage to delivering statge to the customers. It is expected that the proposed u-Farm enterprise architecture can be utilized as a standard information architecture, and the RFID/USN middleware platform can be a infrastructure platform for future u-IT based information technology applications and services in the agricultural environment.

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

A Novel on a Crops Management Growth System using Web and Design Development Method

  • Jung, Se-Hoon;Kim, Jong Chan;Kim, Cheeyong
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.93-98
    • /
    • 2017
  • A new cultivation diary system based on environment sensor data and Web 2.0 with Flex is suggested, to improve the previous system using the subjective data of cultivators. The proposed system is designed by applying an object-oriented model called mini-architecture, in order to enhance the reliability of software as well as promote stability to overall system design. The environment sensor data such as temperature and humidity are used to develop the new reliable diary. Also, an active interface based on Web 2.0 and Android as the user GUI are implemented to maximize the convenience while recording the cultivation diary. The result of the performance evaluation shows that the data from sensors has 99.1% of correlation with that of analogue.