• Title/Summary/Keyword: u- 러닝

Search Result 306, Processing Time 0.025 seconds

A study on the application of the agricultural reservoir water level recognition model using CCTV image data (농업용 저수지 CCTV 영상자료 기반 수위 인식 모델 적용성 검토)

  • Kwon, Soon Ho;Ha, Changyong;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.245-259
    • /
    • 2023
  • The agricultural reservoir is a critical water supply system in South Korea, providing approximately 60% of the agricultural water demand. However, the reservoir faces several issues that jeopardize its efficient operation and management. To address this issues, we propose a novel deep-learning-based water level recognition model that uses CCTV image data to accurately estimate water levels in agricultural reservoirs. The model consists of three main parts: (1) dataset construction, (2) image segmentation using the U-Net algorithm, and (3) CCTV-based water level recognition using either CNN or ResNet. The model has been applied to two reservoirs G-reservoir and M-reservoir with observed CCTV image and water level time series data. The results show that the performance of the image segmentation model is superior, while the performance of the water level recognition model varies from 50 to 80% depending on water level classification criteria (i.e., classification guideline) and complexity of image data (i.e., variability of the image pixels). The performance of the model can be improved if more numbers of data can be collected.

Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images (Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지)

  • Soyeon Choi;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Yungyo Im;Youngmin Seo;Wanyub Kim;Minha Choi;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.949-965
    • /
    • 2023
  • In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning (위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가)

  • Minju Kim;Jeong U Park;Juhyeon Park;Jisoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.481-493
    • /
    • 2023
  • In high-density urban areas, the urban heat island effect increases urban temperatures, leading to negative impacts such as worsened air pollution, increased cooling energy consumption, and increased greenhouse gas emissions. In urban environments where it is difficult to secure additional green spaces, rooftop greening is an efficient greenhouse gas reduction strategy. In this study, we not only analyzed the current status of the urban heat island effect but also utilized high-resolution satellite data and spatial information to estimate the available rooftop greening area within the study area. We evaluated the mitigation effect of the urban heat island phenomenon and carbon sequestration capacity through temperature predictions resulting from rooftop greening. To achieve this, we utilized WorldView-2 satellite data to classify land cover in the urban heat island areas of Busan city. We developed a prediction model for temperature changes before and after rooftop greening using machine learning techniques. To assess the degree of urban heat island mitigation due to changes in rooftop greening areas, we constructed a temperature change prediction model with temperature as the dependent variable using the random forest technique. In this process, we built a multiple regression model to derive high-resolution land surface temperatures for training data using Google Earth Engine, combining Landsat-8 and Sentinel-2 satellite data. Additionally, we evaluated carbon sequestration based on rooftop greening areas using a carbon absorption capacity per plant. The results of this study suggest that the developed satellite-based urban heat island assessment and temperature change prediction technology using Random Forest models can be applied to urban heat island-vulnerable areas with potential for expansion.

The narrative features of as seen through digital culture (<이제부터 제리타임 It's Jerry Time!>을 통해 본 디지털 문화 속 웹 애니메이션의 서사적 특징)

  • Kim, YoungOk
    • Cartoon and Animation Studies
    • /
    • s.34
    • /
    • pp.23-43
    • /
    • 2014
  • The development of the Internet in the 21st century had made a variety of cross-cultural environment so that animations also have evolved with new features to Web-Animation. In Korea, the web-based flash animation leap forward to the animation Utopia in the early 2000's, but did not last long. The web-based animations should attract audience's attention not only with it's minimum streaming capacity but also with showing it's best qualities as well, Therefore, the stimulating narrative strategies were mandatories for web-animation in 2000's. The absence of in-depth research on media, poor revenue structure, and the emergence of mobile games and e-learning industries made the web-animation become just a one-time/one-consumable content. There were no subsequent generation of korean web-animation ever since. In this study, I want to introduce and analyze the american web animation series, (2005) as a new type of web-animation in current digital culture, In particular, I want to discuss how this web animation appeal to the audience with its narrative strategies through using some aspect of the internet culture which's differentiated from traditional media based cultures. This research could suggest diverse narrative strategies for the future web-animation with new vision. Moreover, This also allows to look at latest web-animation trends and its new experiments.

A Study on the stock price prediction and influence factors through NARX neural network optimization (NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구)

  • Cheon, Min Jong;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.572-578
    • /
    • 2020
  • The stock market is affected by unexpected factors, such as politics, society, and natural disasters, as well as by corporate performance and economic conditions. In recent days, artificial intelligence has become popular, and many researchers have tried to conduct experiments with that. Our study proposes an experiment using not only stock-related data but also other various economic data. We acquired a year's worth of data on stock prices, the percentage of foreigners, interest rates, and exchange rates, and combined them in various ways. Thus, our input data became diversified, and we put the combined input data into a nonlinear autoregressive network with exogenous inputs (NARX) model. With the input data in the NARX model, we analyze and compare them to the original data. As a result, the model exhibits a root mean square error (RMSE) of 0.08 as being the most accurate when we set 10 neurons and two delays with a combination of stock prices and exchange rates from the U.S., China, Europe, and Japan. This study is meaningful in that the exchange rate has the greatest influence on stock prices, lowering the error from RMSE 0.589 when only closing data are used.

Multimedia Application and Ubiquitous English Education Environment (멀티미디어 기기 활용과 유비쿼터스 영어 교육환경)

  • Choi, Michelle Mi-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.393-399
    • /
    • 2012
  • New and creative skills must be developed, and adapted into a lesson, to motivate learners to acquire a second language easily and enjoyment, Multimedia tools which are of interest to learners, such as; smart phones, computers, and notebooks with wireless internet compatability, will provide learners opportunities to study, and do their work practically anywhere and anytime. Recently, podcasts, which are a type of digital media, consisting of a series of audio episodes or video files, subscribed to and downloaded through web syndication, or streamed online to a computer or mobile device, are used to facilitate ESL (English as a Second Language) learning. Development of a variety of teaching methods, using multimedia tools, is needed. There are advantages and disadvantages to using a variety of multimedia tools. The current research aims to study its characteristics and application, in order to maximize their effective use, in English education. The current study suggests a ubiquitous learning environment using multimedia content tools, internet media, video teleconferencing, cyber-learning, and one-to-one videos used in conjunction with, or as a digital textbook for the English lesson. This study also investigates future educational changes, using state-of-the-art equipment for the self-learning experience, and will present a new direction in English education, through a variety of instructional devices and a marginalized class system model.

Predicting Performance of Heavy Industry Firms in Korea with U.S. Trade Policy Data (미국 무역정책 변화가 국내 중공업 기업의 경영성과에 미치는 영향)

  • Park, Jinsoo;Kim, Kyoungho;Kim, Buomsoo;Suh, Jihae
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.4
    • /
    • pp.71-101
    • /
    • 2017
  • Since late 2016, protectionism has been a major trend in world trade with the Great Britain exiting the European Union and the United States electing Donald Trump as the 45th president. Consequently, there has been a huge public outcry regarding the negative prospects of heavy industry firms in Korea, which are highly dependent upon international trade with Western countries including the United States. In light of such trend and concerns, we have tried to predict business performance of heavy industry firms in Korea with data regarding trade policy of the United States. United States International Trade Commission (USITC) levies countervailing duties and anti-dumping duties to firms that violate its fair-trade regulations. In this study, we have performed data analysis with past records of countervailing duties and anti-dumping duties. With results from clustering analysis, it could be concluded that trade policy trends of the Unites States significantly affects the business performance of heavy industry firms in Korea. Furthermore, we have attempted to quantify such effects by employing long short-term memory (LSTM), a popular neural networks model that is well-suited to deal with sequential data. Our major contribution is that we have succeeded in empirically validating the intuitive argument and also predicting the future trend with rigorous data mining techniques. With some improvements, our results are expected to be highly relevant to designing regulations regarding heavy industry in Korea.

Anti-Inflammatory Activity of Liquid Fermentation by Phellinus linteus Mycelium (상황버섯(Phellinus linteus) 균사체 액체발효물의 항염증 활성)

  • Shin, Hyun Young;Kim, Hoon;Jeong, Eun-Jin;Kim, Hyun-Gyeong;Son, Seung-U;Suh, Min Geun;Kim, Na Ri;Suh, Hyung Joo;Yu, Kwang-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.487-497
    • /
    • 2021
  • To investigate the industrial availability of liquid fermentation (PL-ferment) by Phellinus linteus mycelium as a postbiotics for the inhibition of inflammation, PL-ferment was fractionated into culture supernatant (CS), hot-water extract (HW) from PL-ferment, EtOH-precipitate (CP) fractionated from HW, and the dialysate (DCP) of CP. Compared to the other fractions, DCP which is expected to contain exopolysaccharide (EPS) as the major component, significantly decreased the production of NO, IL-6, and MCP-1 in LPS-induced RAW 264.7 cells, and IL-6 and IL-8 in TNF-α and IFN-γ-induced HaCaT cells. The general component analysis results showed that no significant difference in components was observed between the fractions, whereas sugar composition analysis revealed that DCP had decreased glucose and increased mannose contents compared to the other fractions. This suggests that mannose played an important role in the anti-inflammatory activity of the active fraction, DCP. Molecular weight distribution analysis revealed that DCP was mainly composed of low-molecular-weight material-removed high-molecular-weight polysaccharides of 18-638 kDa, suggesting that EPS originated from P. linteus EPS. In conclusion, our results suggest that the DCP of P. linteus mycelium fermentation using the anti-inflammatory activity could be used industrially as postbiotic material.

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.