• 제목/요약/키워드: tyrosine hydroxylase (TH)

검색결과 139건 처리시간 0.024초

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Korean Red Ginseng attenuates anxiety-like behavior during ethanol withdrawal in rats

  • Zhao, ZhengLin;Kim, Young Woo;Wu, YiYan;Zhang, Jie;Lee, Ju-Hee;Li, XiaoHua;Cho, Il Je;Park, Sang Mi;Jung, Dae Hwa;Yang, Chae Ha;Kim, Sang Chan;Zhao, RongJie
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.256-263
    • /
    • 2014
  • Background: Korean Red Ginseng (KRG) is known to have antianxiety properties. This study was conducted to investigate the anxiolytic effects of KRG extract (KRGE) during ethanol withdrawal (EW) and the involvement of the mesoamygdaloid dopamine (DA) system in it. Methods: Rats were treated with 3 g/kg/d of ethanol for 28 d, and subjected to 3 d of withdrawal. During EW, KRGE (20 mg/kg/d or 60 mg/kg/d, p.o.) was given to rats once/d for 3 d. Thirty min after the final dose of KRGE, anxiety-like behavior was evaluated in an elevated plus maze (EPM), and plasma corticosterone (CORT) levels were determined by a radioimmunoassay (RIA). In addition, concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) in the central nucleus of the amygdala (CeA) were also measured by high performance liquid chromatography (HPLC). Results: The EPM test and RIA revealed KRGE inhibited anxiety-like behavior and the over secretion of plasma CORT during EW. Furthermore, the behavioral effect was blocked by a selective DA D2 receptor (D2R) antagonist (eticlopride) but not by a selective DA D1 receptor (D1R) antagonist (SCH23390). HPLC analyses showed KRGE reversed EW-induced decreases of DA and DOPAC in a dose-dependent way. Additionally, Western blotting and real-time polymerase chain reaction (PCR) assays showed that KRGE prevented the EW-induced reductions in tyrosine hydroxylase (TH) protein expression in the CeA and TH mRNA expression in the ventral tegmental area (VTA). Conclusion: These results suggest that KRGE has anxiolytic effects during EW by improving the mesoamygdaloid DA system.

수컷 흰쥐의 시상하부-뇌하수체 축 호르몬 유전자 발현에 미치는 6-Hydroxydopamine(6-OHDA)의 영향 (Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Hypothalamus-Pituitary Axis Hormone Genes in Male Rats)

  • 허현진;안련섭;이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권4호
    • /
    • pp.257-264
    • /
    • 2009
  • 6-hydroxydopamine(6-OHDA)는 파킨슨 질환 동물 모델의 제조에 널리 사용되는 신경독소로 도파민성 뉴런에 대한 특이적인 독성을 나타낸다. 도파민 신호는 중추신경계의 광범위한 영역에서 생리 기능을 조절하는데, 이에 따라 파킨슨병 환자와 6-OHDA를 처리한 동물들의 신경내분비 활성에 극심한 변화가 있을 것으로 예상할 수 있다. 하지만 6-OHDA 주사 모델에서 시상하부-뇌하수체 신경내분비 회로에 관한 연구들은 전무한 실정이다. 본 연구는 6-OHDA에 의한 뇌 카테콜아민 합성의 차단이 성체 수컷 흰쥐의 시상하부-뇌하수체 호르몬 유전자들의 전사 활성에 일으키는 변화를 조사한 것이다. 생후 3개월의 수컷 흰쥐(SD strain)에 개체 당 $200{\mu}g$의 6-OHDA를 $10{\mu}\ell$의 생리식염수에 녹여 뇌실 내 주사(icv)하였고, 2주 후에 모든 실험동물들을 희생시켰다. 시상하부-뇌하수체 호르몬 유전자들의 mRNA 수준을 조사하기 위해 total RNA를 추출하여 반-정량적 RT-PCR을 시행하였다. 카테콜아민 생합성에서 속도조절효소로 작용하는 tyrosine hydroxylase(TH)의 경우 6-OHDA군에서 대조군에 비해 유의한 발현 감소가 나타났고(대조군:6-OHDA군=1:0.72${\pm}$0.02AU, p<0.001), 이를 통해 6-OHDA 주사의 효력을 확인 하였다. 시상하부에서 gonadotropin-releasing hormone(GnRH)과 corticotropin releasing hormone(CRH)의 mRNA 수준은 6-OHDA군이 대조군에 비해 유의하게 낮았다(GnRH, 대조군:6-OHDA군=1:0.39${\pm}$0.03AU, p<0.001; CRH, 대조군:6-OHDA군=1:0.76${\pm}$0.07AU, p<0.01). 뇌하수체에서 glycoprotein hormone들의 공통적인 alpha subunit(Cg$\alpha$)과 LH beta subunit(LH-$\beta$) 그리고 FSH beta subunit(FSH-$\beta$)의 mRNA 수준의 경우 모두 6-OHDA군에서 대조군에 비해 유의한 감소를 나타냈다(Cg$\alpha$, 대조군:6-OHDA군=1:0.81${\pm}$0.02AU, p<0.001; LH-$\beta$, 대조군:6-OHDA군=1:0.68${\pm}$0.04AU, p<0.001; FSH-$\beta$, 대조군:6-OHDA군=1:0.84${\pm}$0.05AU, p<0.01). 이와 유사하게, 6-OHDA군에서의 뇌하수체 adrenocorticotrophic hormone(ACTH) 전사 수준 역시 대조군에 비해 유의하게 낮았다(대조군:6-OHDA군=1:0.86${\pm}$0.04AU, p<0.01). 본 연구는 중추신경계로의 도파민 신경독소 주입에 의해 두 가지의 시상하부-뇌하수체 신경내분비 회로인 GnRH-성선자극호르몬 회로와 CRH-ACTH 회로의 전사 활성이 하향 조정됨을 증명하였다. 이러한 결과는 시상하부로의 CA 입력은 시상하부-뇌하수체 기능 조절을 통해 생식소와 부신의 활성에 영향을 미침을 시사하는 것으로, 파킨슨병 환자들에게서 빈번하게 발생하는 성 기능 장애와 열악한 스트레스 반응을 설명할 단서를 제공한다.

  • PDF

파킨슨병 모형 흰쥐의 줄무늬체에서 Apomorphine 투여 방법에 따른 도파민 D2 수용체의 발현 (Expression of Dopamine D2 Receptor in Response to Apomorphine Treatment in the Striatum of the Rat with Experimentally Induced Parkinsonism)

  • 최승진;성재훈;손병철;박춘근;권성오;김문찬;이상원
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권7호
    • /
    • pp.868-876
    • /
    • 2000
  • Objective : Parkinsonian rat models have generally been characterized by unilateral destruction of both the nigrostriatal pathway and the mesolimbic pathway using the neurotoxin 6-hydroxydopamine. The induction of contraversive turning by apomorphine in these models is thought to reflect the stimulation of supersensitive dopamine D2 receptor or receptor-mediated mechanisms in denervated neostriatum. The present study was undertaken to investigate the expression of dopamine D2 receptor in denervated striatum according to modalities of apomorphine(dopamine agonist) treatment after creating a hemiparkinsonian rat model in which there is 6-hydroxydopamine induced destruction of the unilateral dopaminergic nigrostriatal pathway. Methods : After making complete lesion in left side substantia nigra pars compacta(SNpc) by stereotactic injection of 6-hydroxydopamine into medial and lateral areas of SNpc, and confirming successful animal model by apomorphine induced contraversive turning behavior without recovery and complete destruction of ipsilateral SNpc with tyrosine hydroxylase immunostaining in 7th day after operation, 15 rats of parkinsonian model were studied with or without administration of apomorphine at varying doses and durations. According to the modalities of apomorphine treatment for 4 days, these rats were divided into 3 groups, as not-treated group, intermittently treated group and constantly treated group. For investigating the extent of the expression of dopamine D2 receptor in denervated striatum, immunohistochemical staining by dopamine D2 receptor antibody and Western blot were performed. Results : In the D2 receptor antibody immunohistochemical staining, the mean number of positive stained neurons was highest in not-treated group($20.5{\pm}1.14$) of 3 groups. In constantly treated group, the mean number of positive stained neurons was less($3.9{\pm}1.79$) than intermittently treated group(p<0.05). The Western blotting with the D2 receptor antibody revealed that expression of receptors was also highest in not-treated group and less in constantiy treated group than intermittently treated group. Conclusion : Dopamine D2 receptors in denervated striatum of parkinsonian rat models, which were not treated with apomorphine, revealed to be most highly expressed. And, according to doses and durations of apomorphine administration, desensitization of the receptor was more apt to develop with constant treatment than intermittent treatment. In clinical setting, the authors believe that, in long-term treated parkinsonian patients, desensitization of dopamine receptors due to chronic dopaminergic stimulation seems to be partially related to mechanisms of drug tolerance.

  • PDF

인삼양영탕(人蔘養營湯)의 산화적 stress에 대한 뇌세포 보호효과 (Neuroprotective Effect of Insamyangyung-tang)

  • 김승현;이창훈;이진무;조정훈;장준복;이경섭
    • 대한한방부인과학회지
    • /
    • 제22권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Purpose: Oxidative stress was thought to play a critical role in neurodegenerative disease. Many in vivo and in vitro reports explained the possible pathway of human aging. But in therapeutic aspects, there was no clear answers to prevent aging associated with neural diseases. In this study, we investigated the antioxidant and neuroprotective effects of the Insamyangyung-tang (IYT). Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3- ethylbenzothiazoline-6- sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of IYT in vitro. We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The $IC_{50}$ values were $571.6{\mu}g/m{\ell}$ and $202.3{\mu}g/m{\ell}$ in DPPH and ABTS assay respectively. Total polyphenolic content was 1.05%. In SH-SY5Y culture, IYT significantly increased the decreased cell viability by 6-OHDA at the concentrations of $10{\mu}g/m{\ell}$ in pre-treatment group, $10-100{\mu}g/m{\ell}$ in post-treatment group, and $100{\mu}g/m{\ell}$ in co-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in IYT treated group. In mesencephalic dopaminergic cell culture, the IYT group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of $0.2{\mu}g/m{\ell}$. Conclusion: These results showed that IYT has antioxidant and neuroprotectctive effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell.

분심기음(分心氣飮)의 도파민 세포 보호 효과 (Neuroprotective Effects of Bunsimgieum)

  • 김로사;이창훈;이진무;조정훈;장준복;이경섭
    • 대한한방부인과학회지
    • /
    • 제22권2호
    • /
    • pp.119-131
    • /
    • 2009
  • Purpose: The depression accompanied with menopuase shows the relation with the dopamine secretion. These studies were undertaken to evaluate the anti- oxidative and neuroprotective effects of Bunsimgieum(BSGE) on dopaminergic neurons. Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3-ethylbenzothiazoline -6-sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of BSGE in vitro, We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The DPPH free radical and the ABTS radical cation inhibition activities were increased at a dose dependent manner. Total polyphenolic content was 0.83%. In SH-SY5Y culture, BSGE significantly increased the decreased cell viability by 6-OHDA at the concentrations of 10${\mu}$g/m${\ell}$ in pre-treatment group, 0.1-200${\mu}$g/m${\ell}$ in post-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in BSGE treated group. In mesencephalic dopaminergic cell culture, the BSGE group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of 5${\mu}$g/m${\ell}$. Conclusion: These results shows that BSGE has antioxidant and neuroprotective effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell. We suggest that BSGE could be useful for the treatment of postmenopausal depression related with the decrease of dopamine.

MPTP로 유도된 Parkinson's disease 동물 모델에서 열다한소탕 가감방 (MYH)의 신경 세포 보호 효과 (Neuroprotective Effects of Modified Yuldahanso-tang (MYH) in a Parkinson's Disease Mouse Model)

  • 고가연;김윤하;안택원
    • 사상체질의학회지
    • /
    • 제27권2호
    • /
    • pp.270-287
    • /
    • 2015
  • Objectives To evaluate the neuroprotective effects of modified Yuldahanso-tang (MYH) in a Parkinson's disease mouse model. Methods 1) Four groups (each of 8 rats per group) were used in this study. 2) The neuroprotective effect of MYH was examined in a Parkinson's disease mouse model. C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days. 3) The brains of 2 mice per group were removed and frozen at $-20^{\circ}C$, and the striatum-substantia nigra part was seperated. The protein volume was measured by Bradford method following Bio-Rad protein analyzing kit. Using mouse/Rat Dopamine ELISA Assay Kit. 4) The brains of 2 mice per group were separated and removed. TH-immunohistochemical was examined in the MPTP-induced Parkinson's disease mice to evaluate the neuroprotective effects of MYH on ST and SNpc. 5) Two mice out of each group were anesthetized and skulls were opened from occipital to frontal direction to take out the brains. The brains added TTC solution for 20 minutes for staining. 6) The water tank used for morris water maze test was filled with $28^{\circ}C$ water, and a round platform of 10cm in diameter was installed for mice to step on. The study was carried out once a day within 30 seconds, keep exercising to step on the platform in the pool. 7) The brains of two mice out of each group were fixed in 10% formaldehyde solution and paraphillin substance was infiltrated. They were fragmented by microtome, and observed under an optical microscope after Hematoxylin & Eosin staining. 8) A round acrylic cylinder with its upper side open was filled with clean water and depressive mouse models were forced to swim for 15 minutes. After 24 hours the animals were put in the same equipment for 5 minutes and were forced to swim. 9) The convenient, simple, and accurate high-performance liquid chromatography (HPLC) method was established for simultaneous determination of Neurotransmitters in MPTP-MYH group. Results 1) MYH possess Dopamine cell protective effect on MPTP-induced injury in striatum and substantia nigra pars compacta. 2) MYH inhibits the loss of tyrosine hydroxylase-immunoreacitive (TH-IR) cells in the striatum and substantia nigra pars compacta on MPTP-induced injury in C57BL/6 mice. 3) MYH possesses improvement effect on MPTP-induced memory deterioration in C57BL/6 mice through the reduction of prolongated Sort of lost time by MPTP injection using the Morris water maze test. 4) MYH possesses hippocampal neuron protective effect on MPTP-induced injury in C57BL/6 mice. 5) MYH possesses improvement effect on MPTP-induced motor behaviour deficits and depression in C57BL/6 mice through the reduction of prolongated losing motion by MPTP injection using the Forced swimming test. 6) MYH increases serotonin product amount on MPTP-induced injury in C57BL/6 mice. Conclusions This experiment suggests that the neuroprotective effect of MYH is mediated by the increase in Dopamin, TH-ir cell, Hippocampus and Serotonin. Furthermore, MYH essential oil may serve as a potential preventive or therapeutic agent regarding Parkinson's disease.

흰쥐 흑질내 수산화도파민 주입으로 유도된 파킨슨병 모델에서 흑질과 선조체의 신경교세포 반응 (Neuroglial Reaction in the Substantia Nigra and Striatum of 6-Hydroxydopamine Induced Parkinson's Disease Rat Model)

  • 양경원;성재훈;김문찬;이문용;이상원;최승진;박춘근;강준기
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권6호
    • /
    • pp.688-698
    • /
    • 2001
  • Objectives : Parkinson's disease is a well-known neurodegenerative disease characterized by dopaminergic cell death in the substantia nigra. The reactive gliosis by activated astrocytes and microglias is no more regarded as a simple sequel of neuronal cell death. Microglial activation takes place in a stereotypic pattern with graded morphologic and functional(resting, activated and phagocytic) changes. In Parkinson's disease animal model, the degree of microglial activation along the nigro-striatal dopaminergic tract has not been studied intensively. The purpose of this study was to elucidate the characteristics of microglial reaction and to grade its degree of activation at substantia nigra and corpus striatum using 6-hydroxydopamine induced rat model of Parkinson's disease. Methods : Using Sprague-Dawley rat, parkinsonian model was made by 6-hydroxydopamine(OHDA) induced destruction of medial and lateral substantia nigra(SN). The rat was sacrificed 3-, 5-, 7-, 14- and 21-day-after operation. For control group, we injected saline with same manner and sacrificed 3-day after operation. With immunohistochemistry, we examined dopaminergic neuronal cells and microglial expression using tyrosine hydroxylase (TH) and OX-42 antibodies, respectively. Also we performed in situ hybridization for osteopontin, a possible marker of subset in activated microglia. Results : 1) In lesioned side of substantia nigra and corpus striatum, the TH immunoreactivity was markedly decreased in whole experimental groups. 2) Using optical densitometry, microglia induced immunoreactivity of OX-42 was counted at SN and corpus striatum. At SN, it was increased significantly on the lesioned side in control and all time-dependent experimental groups. At striatum, it was increased significantly in post lesion 3-day group only(p <0.05). Compared to control group, immunoreactivity of OX-42 on lesioned side was increased in groups, except post lesion 21-day group, at SN. Only post lesion 3-day group showed significance at striatum(p <0.05). Compared to SN region, immunoreactivity of OX-42 was much weaker in striatum. 3) Microscopically, the microglias showed typically different activation pattern. At SN, numerous phagocytic microglias were found at pars compacta and reticularis of lesion side. At striatum, no phagocytic form was found and the intensity of staining was much weaker. 4) At SN, the immunoreactivity of osteopontin showed definite laterality and it was markedly increased at pars compacta of lesion side with relatively short duration time. At striatum, however, it was not detected by in situ hybridization technique. Conclusion : The nigral 6-OHDA induced rat model of Parkinson's disease revealed several characteristic patterns of microglial reaction. At SN, microglias was activated shortly after direct neuronal damage and maintained for about three weeks. In contrast, despite of sufficient dopaminergic insufficiency at striatum, activation of microglias was trivial, and distinguished 3 day later. Antegrade slow neuronal degeneration is major pathophysiology in striatal dopaminergic deficiency. So, the acuteness of neuronal damage and consequential degree of neuronal degeneration may be important factor for microglial activation in neurodegenerative diseases such as Parkinson's disease. Additionally, osteopontin may be a possible marker for several subsets of activated microglia, possibly the phagocytic form.

  • PDF

소요산(逍遙散) 약침(藥鍼)이 난소적출 흰쥐의 항(抗)스트레스 작용(作用)에 미치는 영향(影響) (Anti-stress effects of Herbal Acupuncture by Soyo-san on ovariectomized rats)

  • 오승희;박현정;함대현;심인섭;이혜정
    • Journal of Acupuncture Research
    • /
    • 제22권1호
    • /
    • pp.117-130
    • /
    • 2005
  • 소요산(逍遙散) 약침(藥針)이 흰쥐의 갱년기(更年期) 우울증(憂鬱症) 및 stress모델의 인지, 학습 및 기억장애와 불안행동에 미치는 효능(效能)을 파악하기 위하여 행동실험 학적 검사와 면역조직화학적 검사를 실시한 결과 다음과 같은 결론을 얻었다. 1. Morris water maze의 학습검사결과 Soyo-san군(群)의 경우, 시간단축이 현저하게 나타나서 제 6일째 $24.69{\pm}8.48$초로 측정되어 Ovx군(群)에 대해 유의성 있는 인지 및 학습력을 보였다. 2. Morris water maze의 기억검사결과 Soyo-san군(群)이 $3.38{\pm}0.82$로 Sham군(群)과 Ovx군(群)에 대해 머문 시간이 유의성있게 증가하였다. 3. Ventral tegmental area의 TH의 발현정도는 Normal군(群)이 $9.14{\pm}0.50$, Sham군(群)은 $9.00{\pm}0.29$, Ovx군(群)은 $10.81{\pm}0.63$, Soyo-san군(群)은 $8.19{\pm}0.42$로 나타났는데 Soyo-san군(群)이 Ovx에 대해 유의성있게 감소하였다. 4. Hippocampus의 CAI부위에서는 ChAT 발현 정도에서 Soyo-san군(群)이 On군(群)에 대해서 유의하게 증가하였다. 이상(以上)의 결과를 종합하면 소요산(逍遙散) 약침(藥針)이 난소 적출 흰쥐의 stress모델의 인지, 학습 및 기억장애를 호전시키는 것으로 나타났으며 이는 갱년기(更年期) 여성(女性)의 우울증(憂鬱症) 및 stress 반응에 대한 적절한 치료제로서 가능하리라 사료된다.

  • PDF