• Title/Summary/Keyword: two-way relay network

Search Result 62, Processing Time 0.021 seconds

Modulation Scheme for Network-coded Bi-directional Relaying over an Asymmetric Channel (양방향 비대칭 채널에서 네트워크 부호화를 위한 변조 방식)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.97-109
    • /
    • 2012
  • In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when $E_b/N_0$ is equal to $10^{-2}$, while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.

A Study on the Binary-Coded Physical-Layer Network Coding with High-Order Modulation Techniques (고차원 변조방식을 적용한 이진 부호화된 물리계층 네트워크 코딩에 관한 연구)

  • Lim, Hyeonwoo;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2131-2139
    • /
    • 2014
  • In this paper, a binary-coded physical-layer network coding (PNC) is considered when high-order modulation techniques are used at source nodes in wireless communication environments. In the conventional PNC schemes, tight power control and phase compensation are required at a relay node. However, they may not be feasible in practical wireless communication environments. Thus, we do not assume the pre-equalization in this paper, and we only utilize the channel state information at receiver (CSIR). We propose a signal detection method for the binary-coded PNC with high-order modulation, such as QPSK and 16QAM, at the source nodes, while the conventional scheme only consider the BPSK at source nodes. We also analyze the bit-error performance of the proposed technique in both uncoded and coded cases.