• Title/Summary/Keyword: two-step precipitation interpolation

Search Result 2, Processing Time 0.016 seconds

Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling (강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일강우 내삽법의 개발)

  • Hwang, Yeon-Sang;Jung, Young-Hun;Lim, Kwang-Suop;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1083-1091
    • /
    • 2010
  • Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. However, widely used estimation schemes fail to describe the realistic variability of daily precipitation field. We compare and contrast the performance of statistical methods for the spatial estimation of precipitation in two hydrologically different basins, and propose a two-step process for effective daily precipitation estimation. The methods assessed are: (1) Inverse Distance Weighted Average (IDW); (2) Multiple Linear Regression (MLR); (3) Climatological MLR; and (4) Locally Weighted Polynomial Regression (LWP). In the suggested simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before applying IDW scheme (one of the local scheme) to estimate the amount of precipitation separately on wet days. As the results, the suggested method shows the better performance of daily rainfall interpolation which has spatial differences compared with conventional methods. And this technique can be used for streamflow forecasting and downscaling of atmospheric circulation model effectively.

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.