• Title/Summary/Keyword: two-step deposition

Search Result 136, Processing Time 0.029 seconds

Dielectric properties with heat-input condition of PZT thin films for ULSI's capacitor -1- A study on the improvement of leakage current of PZT thin films using a amorphous PZT layer (초고집적회로의 커패시터용 PZT박막의 입열 조건에 따른 유전특성 -1- 비정질 PZT를 사용한 PZT 박막의 누설전류 개선에 관한 연구)

  • 마재평;백수현;황유상
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.101-107
    • /
    • 1995
  • To improve the leakage current, we developed two step sputtering method where PZT thin film in first deposited at room temperature followed by 600.deg. C deposition. The method used an amorphous PZT layer deposited at room temperature to keep a stable interface during sputtering at high temperature. PZT thin films were deposited on Pt/Ti/SiO$_{2}$/Si substrate at room temperature and 600.deg. C sequentially. The effect of the layer deposited at room temperature was investigated with regard to I-V characteristics and P-E hysteresis loop. In the case of the sample with the layer deposited at room temperature, both leakage current and dielectric constant were decreased. The thicker the layer deposited at room temperature was, the lower dielectric constant was. However, leakage current was indepenent of the variation of the thickness ratio. The sample with 200$\AA$ of the layer deposited at room temperature showed the most promising results in both dielectric constant and leakage current.

  • PDF

Effects of the post-annealing temperature on the properties of $MgB_2$ thin films ­ (가열냉각 온도에 따른 $MgB_2$ 박막의 특성변화)

  • Hyeong-Jin Kim;W. N. Kang;Eun-Mi Choi;Sung-Ik Lee
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.45-48
    • /
    • 2001
  • We have fabricated $MgB_2$thin films on (1 1 02)$ A1_2$$O_3$substrates by using a two-step method. Amorphous B thin films were deposited by a pulsed laser deposition technique and sintered in Mg vapor at various temperatures from 800 to $950^{\circ}C$. Superconducting properties of the thin films were investigated by temperature dependences of magnetization and critical current density. Structural studies were carried out by an x-ray diffraction and a scanning electron microscope. The films fabricated at $900^{\circ}C$ showed the highest transition temperature of 39 K and critical current density of ~$10^{7}$ A/$\textrm{cm}^2$ at 15 K.

  • PDF

Effect of Ti Interlayer Thickness on Epitaxial Growth of Cobalt Silicides (중간층 Ti 두께에 따른 CoSi2의 에피텍시 성장)

  • Choeng, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2003
  • Co/Ti bilayer structure in Co salicide process helps to the improvement of device speed by lowering contact resistance due to the epitaxial growth of $CoSi_2$layers. We investigated the epitaxial growth and interfacial mass transport of $CoSi_2$layers formed from $150 \AA$-Co/Ti structure with two step rapid thermal annealing (RTA). The thicknesses of Ti layers were varied from 20 $\AA$ to 100 $\AA$. After we confirmed the appropriate deposition of Ti film even below $100\AA$-thick, we investigated the cross sectional microstructure, surface roughness, eptiaxial growth, and mass transportation of$ CoSi_2$films formed from various Ti thickness with a cross sectional transmission electron microscopy XTEM), scanning probe microscopy (SPM), X-ray diffractometery (XRD), and Auger electron depth profiling, respectively. We found that all Ti interlayer led to$ CoSi_2$epitaxial growth, while $20 \AA$-thick Ti caused imperfect epitaxy. Ti interlayer also caused Co-Ti-Si compounds on top of $CoSi_2$, which were very hard to remove selectively. Our result implied that we need to employ appropriate Ti thickness to enhance the epitaxial growth as well as to lessen Co-Ti-Si compound formation.

Enhanced magnetic properties of FeCo alloys by engineering crystallinity and composition (FeCo의 결정성 및 조성 제어를 통한 자기 특성 향상)

  • Kim, Dan-Bi;Kim, Ji-Won;Eom, Nu-Si-A;Park, Seong-Heum;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.32.1-32.1
    • /
    • 2018
  • Novel soft magnetic materials can be achieved by altering material properties such as morphology, composition, crystallinity, and grain size of soft magnetic alloys. Especially, magnetic properties (i.e., saturation magnetization, coarcivity) of soft magnetics are significantly affected by grain boundaries which act as a control of magnetic domain wall movement. Thus, we herein develop a two-step electroless plating method to control morphology and grain size of FeCo films for excellent magnetic properties. Accordingly, the chemical composition to control the degree of polarization of FeCo alloys was altered by electroless deposition parameters; for example, electrolyte concentration and temperature. The grain size and crystallinity of FeCo alloys was dramatically affected by the reaction temperature because the grain growth mechanism dominantly occurs at $90^{\circ}C$ where as the neucleation only happens at $50^{\circ}C$. By simply controlling the temperature, the micron-sized FeCo grains embedded FeCo film was synthesized where the large grains allow high magnetization originated from larger magnetic domain with low corecivity and the nano-sized grains allow excellent soft magnetic properties due to the magnetic correlation length.

  • PDF

Improvement of the Thermochemical water-splitting IS Process Using the Membrane Technology (분리막 기술을 이용한 열화학적 수소제조 IS[요오드-황] 프로세스의 개선)

  • Hwang, Gab-Jin;Kim, Jong-Won;Sim, Kyu-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.249-258
    • /
    • 2002
  • Thermochemical water-splitting IS(Iodine-Sulfur) process has been investigating for large-scale hydrogen production. For the construction of an efficient process scheme, two kinds of membrane technologies are under investigating to improve the hydrogen producing HI decomposition step. One is a concentration of HI in quasi-azeotropic HIx ($HI-H_2O-I_2$) solution by elecro-electrodialysis. It was confirmed that HI concentrated from the $HI-H_2O-I_2$ solution with a molar ratio of 1:5:1 at $80^{\circ}C$. The other is a membrane reactor to enhance the one-pass conversion of thermal decomposition reaction of gaseous hydrogen iodide (HI). It was found from the simulation study that the conversion of over 0.9 would be attainable using the membrane reactor using the gas permeation properties of the prepared silica hydrogen permselective membrane by chemical vapor deposition (CVD). Design criterion of the membrane reactor was also discussed.

Properties of SiOCH Thin Film Bonding Mode by BTMSM/O2 Flow Rates (BTMSM/O2 유량변화에 따른 SiOCH 박막 결합모드의 2차원 상관관계 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • The dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was evaporated and introduced with the flow rates from 16 sccm to 25 sccm by 1sccm step in the constant flow rate of 60 sccm $O_2$ in process chamber. Manufactured samples are analyzed components by measuring FT/IR absorption lines. Decomposition each Microscopic structures through two-dimensional correlation analysis about mechanisms for the formation of SiOCH in $SiOCH_3$, Si-O-Si and Si-$CH_3$ bonding group and analyzed correlation between the micro-structure of each group. It is a tendency that seems to be growing of Si-O-Ci(C) bonding group and narrowing of Si-O-$CH_3$ bonding group relative to the increasing flow-rate BTMSM. The order of changing sensitivity about changes of flow-rate in Si-O-Si(C) bonding group is cross link mode$(1050cm^{-1})$ $\rightarrow$ open link mode$(1100cm^{-1})\rightarrow$ cage link mode $(1140cm^{-1})$.

Consumable Approaches of Polysilicon MEMS CMP

  • Park, Sung-Min;Jeong, Suk-Hoon;Jeong, Moon-Ki;Park, Boum-Young;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.157-162
    • /
    • 2006
  • Chemical-mechanical polishing (CMP), one of the dominant technology for ULSI planarization, is used to flatten the micro electro-mechanical systems (MEMS) structures. The objective of this paper is to achieve good planarization of the deposited film and to improve deposition efficiency of subsequent layer structures by using surface-micromachining process in MEMS technology. Planarization characteristic of poly-Si film deposited on thin oxide layer with MEMS structures is evaluated with different slurries. Patterns used for this research have shapes of square, density, line, hole, pillar, and micro engine part. Advantages of CMP process for MEMS structures are observed respectively by using the test patterns with structures larger than 1 urn line width. Preliminary tests for material selectivity of poly-Si and oxide are conducted with two types of silica slurries: $ILD1300^{TM}\;and\;Nalco2371^{TM}$. And then, the experiments were conducted based on the pretest. A selectivity and pH adjustment of slurry affected largely step heights of MEMS structures. These results would be anticipated as an important bridge stone to manufacture MEMS CMP slurry.

Movpe Growth of InP/GaAs and GalnAs/GaAs from EDMln, TBP and TBAs (EDMln, TBP와 TBAs를 이용한 InP/GaAs와 GalnAs/GaAs의 MOVPE 성장)

  • 유충현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.12-17
    • /
    • 1998
  • The heteroepitaxial growth of InP and GaInAs on GaAs substrates has been studied by using a new combination of source materials: ethyldimethylindium (EDMIn) and trimethylgallium (TMGa) as group III sources, and tertiarybutylarsine (TBAs) and tertiarybutylphosphine (TBP) as group V sources. Device quality InP heteroepitaxial layers were obtained by using a two-step growth process under atmospheric pressure, involving a growth of an initial nucleation layer at low temperature followed by high temperature annealing and the deposition of epitaxial layer at a growth temperature. The continuity and thickness of nucleation layer were important parameters. The InP layers deposited at 500$^{\circ}$- 55$0^{\circ}C$ are all n-type, and the electron concentration decreases with decreasing TBP/EDMIn molar ratio. The excellent optical quality was revealed by the 4.4 K photoluminescence (PL) measurement with the full width at half maximum (FWHM) of 4.94 meV. Epitaxial Ga\ulcorner\ulcorner\ulcornerIn\ulcorner\ulcorner\ulcornerAs layers have been deposited on GaAs substrates at 500$^{\circ}$ - 55$0^{\circ}C$ by using InP buffer layers. The composition of GaInAs was determined by optical absorption measurements.

  • PDF

Reduction of anisotropic crystalline quality of a-plane GaN grown on r-plane sapphire

  • Seo, Yong-Gon;Baek, Gwang-Hyeon;Park, Jae-Hyeon;Seo, Mun-Seok;Yun, Hyeong-Do;O, Gyeong-Hwan;Hwang, Seong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.170-170
    • /
    • 2010
  • a-plane 혹은 m-plane면을 사용하는 무분극 GaN LED는 c축 방향으로 발생하는 분극의 영향을 받지 않기 때문에 분극 GaN LED에 비해 높은 내부 양자효율을 가진다. 또한 무분극 GaN는 상대적으로 고농도의 p-type 도핑이 가능하기 때문에 광효율을 높일 수 있다. 하지만 이와 같은 장점에도 불구하고 무분극 GaN는 성장모드의 비대칭으로 인해 높은 결정성과 mirror-like한 표면을 얻기가 힘들다. 본 논문에서는 Metalorganic chemical-vapor deposition (MOCVD) 장비를 사용하여 r-plane 사파이어 기판위에 a-plane GaN을 성장시켰다. 일반적으로 사용하는 저온에서의 nucleation layer 성장 대신 $1050^{\circ}$의 고온에서 성장 시킨후 일반적으로 사용하는 two-step 성장방법으로 그위에 5.5um정도의 GaN을 성장시켰다. 성장시 Trimethylgallium(TMGa)와 암모니아를 각각 Ga과 N 소스로 이용하였고 캐리어 가스는 수소를 사용하였다. 비대칭 결정성을 줄이기 위해 3D island growth mode에서의 성장조건을 바꾸어 c축과 m축 방향으로의 X-ray 결정성(FWHM) 차이가 564 arcsec에서 206 arcsec로 변화 시켰다. Normarski 현미경으로 표면을 관찰한 결과 v-defect이 없고 a-plane GaN에서 볼 수 있는 전형적인 줄무늬 패턴을 가지는 표면을 얻었으며 광학적 특성을 보기 위해 Photoluminescence (PL)을 측정하였다.

  • PDF

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.