• Title/Summary/Keyword: two-phase solvent system

Search Result 54, Processing Time 0.02 seconds

Solvent-localized in-situ NMR Monitoring by Intermolecular Single-quantum Coherence Study

  • Cha, Jin Wook;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.96-103
    • /
    • 2020
  • A new NMR method to monitor solvent-localized NMR signals in the two-phase liquid system is suggested. This method based on intermolecular single-quantum coherence (iSQC). Here, we exploited the feature of the local action of distant dipolar field (DDF) effect in order to filter out specific NMR signals dissolved in different solvents. This solvent specific iSQC spectroscopy was carried out on a model two-phase liquid system (D-glucose in water/palmitic acid in chloroform), and showed solvent-localized NMR signals. We believe our approaches might be useful in metabolic analysis such as two-phase liquid extraction scheme for labile chemical species.

Preparative Isolation of Ginseng Saponin from Panax ginseng Root Using High-speed Countercurrent Chromatography (High-speed countercurrent chromatography를 이용한 인삼 saponin의 대량 분리 농축)

  • Lee, Chang-Ho;Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.518-521
    • /
    • 2004
  • Ginseng saponin was isolated from panax ginseng root using high-speed countercurrent chromatography (HSCCC). Preliminary studies were performed to optimize physical properties of two-phase solvent system and operating parameters including rotation speed of column, elution mode of mobile phase, and flow rate. Two-phase solvent system for isolation of ginseng saponins was composed of chloroform, water, and methanol as blending solvent. Chloroform-aqueous methanol (4:6) systems with various concentration of methanol in water were evaluated for retention of stationary phase in column. Retention of stationary phase decreased with increasing flow rate in tail-to-head elution mode using upper phase as mobile phase and head-to-tail elution mode using lower phase as mobile phase. Latter mode produced high retention at flow rate of 5 mL/min. Optimum conditions for isolation of saponin were chloroform/methanol/water (40/39/21) solvent system; mobile phase, of lower organic layer, flow rate, of 5 mL/min, head to tail elution mode, rotation speed, of 800 rpm, and sample injection, of $200{\mu}L$, Recovery yield of ginseng saponin from panax ginseng root extract by HSCCC was 63.6%, and the purity of HSCCC fractions was verified by TLC.

이상추출배양을 통한 Botryococcu braunii에서의 탄화수소 생산

  • Sim, Sang-Jun;An, Jin-Yeong;Kim, Byeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.112-115
    • /
    • 2002
  • The green colonial algae Botryococcus braunii is characterized by unusual high hydrocarbon contents, ranging from 15 to 75% of dry weight, as long-chain unsaturated hydrocarbons. In two-phase bubble column using various organic solvents, poor recovery 08 - 32%) of hydrocarbon seems to be caused by insufficient mixing between two phases, which was operated using only aeration on the narrow interface between hydrophobic solvent and cell suspension. In addition, hydrocarbon was entrapped tightly in cell-matrix (formed by exopolysaccharide) of algal colony, which make difficult to extract using two-phase system. To improve recovery efficiency, mixed-solvent of extractive solvent (octane) and biocompatible solvent (octane) was tested in two-phase column for in situ extraction. In two-phase extraction culture using mixed-solvent, the algal growth was intensely inhibited even at low concentration of polar octanol solvent. the hydrocarbon recovery in two-stage cell-recycle extraction showed a 2.9 fold increase (57%) over that in two-phase extraction. Up to 60 % of hydrocarbon could be recovered without serious cell-damage in the case of downstream separation for 6 h at the high recycle flow rate using this process after batch culture.

  • PDF

Phase Equilibrium Study on the Ternary System of SBR/EPDM/Solvent (SBR, EPDM 및 Solvent로 이루어진 삼성분계의 상 평형에 관한 연구)

  • Go, Jin-Hwan;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.211-216
    • /
    • 2002
  • The polymer-polymer interaction parameter, x 23t, of the styrene-butadiene polymer (SBR) and ethylene-propylene-diene terpolymer (EPDM) was investigated by observing the phase behavior of the ternary system of SBR/EPDM/solvent. The solvent used in this study was benzene acting as a good solvent for SBR but as a poor solvent for EPDM. Ternary solutions with various concentrations and mixing ratios of the two component polymers were separated into two phases by temperature change The cloud point curves (CPC) showed that the differerence of solvent affinities toward each polymer and the repulsive interaction between two polymers considerably affect the shape of CPC near 15℃. In the temperature range of 5℃ ~ 25℃, incompatible behaviours arised from both the difference of mixing ratios and concentration were clearly observed. Also the phase separation temperature greatly influenced on the composition of each separated phase. The calculated x 23t values from Flory-Huggins theory were in the range of 0.6301 ~ 1.0775, which suggest that the SBR/EPDM systems are incompatible.

Reactive Dyeing in Immiscible Two-phase System of Water/Organic Solvent(Ⅱ) - The Dyeing of Silk with C. I. Reactive Blue 203 - (물/유기용매 불혼합 이성분계에서의 반응염색(Ⅱ) - C. I. Reactive Blue 203을 이용한 견섬유의 염색 -)

  • Kim, Tae Gyeong;Kim, Mi Gyeong;Im, Yong Jin;Jo, Gwang Ho
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.42-42
    • /
    • 2001
  • Following the prior studs regarding that 1.0g of cotton fabric cound be dyed uniformly with a reactive dye in the solvent mixture of 2㎖ of water and 23㎖ of dichloromethane, silk fabric was dyed with C. I. Reactive Blue 203 in the water/dichloromethane two-phase immiscible solvent media. In order to minimize dye loss due to its hydrolysis, the reactive dyeing was carried out in dichloromethane containing a small amount of water. With only 3㎖ of water in 22㎖ of dichloromethane, 1.0g of silk fabric could be dyed perfectly. The uptake ratio was increased greatly, compared with that of normal reactive dyeing in a water medium. It would seem that the one of hydrophobic solvents, dichloromethane, can assist the even dyeing as it disperses a small amount of dye-dissolved water phase and conveys this water phase to the fabric entirely and uniformly.

Reactive Dyeing in Immiscible Two-phase System of Water/Organic Solvent (II) - The Dyeing of Silk with C. I. Reactive Blue 203 - (물/유기용매 불혼합 이성분계에서의 반응염색(II) - C. I. Reactive Blue 203을 이용한 견섬유의 염색 -)

  • 김태경;김미경;임용진;조광호
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.128-134
    • /
    • 2001
  • Following the prior studs regarding that 1.0g of cotton fabric round be dyed uniformly with a reactive dye in the solvent mixture of $2m\ell$ of water and $23m\ell$ of dichloromethane, silk fabric was dyed with C. I. Reactive Blue 203 in the water/dichloromethane two-phase immiscible solvent media. In order to minimize dye loss due to its hydrolysis, the reactive dyeing was carried out in dichloromethane containing a small amount of water. With only $3m\ell$ of water in $22m\ell$ of dichloromethane, 1.0g of silk fabric could be dyed perfectly. The uptake ratio was increased greatly, compared wish that of normal reactive dyeing in a water medium. It would seem that the one of hydrophobic solvents, dichloromethane, can assist the Even dyeing as it disperses a small amount of dye-dissolved phase and conveys this water phase to the fabric entirely and uniformly.

  • PDF

Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water (사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물))

  • 백기전;김제영;이환광;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

Compatibility at Polymer/Polymer Mixture Interfaces in the Presence of Solvent

  • Yoon, Kyung-Sup;Park, Hyung-Suk;Lee, Jo-Woong;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.214-221
    • /
    • 1994
  • We present some results obtained from theoretical study on a non-symmetrical A/BC polymeric system including solvent which consists of two phases, a polymeric phase A on one side and a mixture of polymers B (as a compatibilizer) and C on the other in the presence of a solvent. By employing the functional integral techniques we derive the mean-field equations and solve them numerically to deduce the physical properties of the interface involving the polymers and solvent concentration profiles in the limit that molecular weights of all the polymers involved tend to infinity. The calculations are performed for typical values of the Flory interaction parameters and for the volume fraction of polymer B in the asymptotic phase and of solvent. In the polymers/solvent blend under consideration the interfacial adsorption of polymer B, the solvent concentration, and degrees of the specific interaction between the polymers are found to play important roles in modification of the interfacial properties.

Botryococcus braunii 배양에서 탄화수소의 two-stage 동시추출공정

  • An, Jin-Yeong;Choe, Jeong-Gyu;Sim, Sang-Jun;Kim, Byeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.229-232
    • /
    • 2000
  • The carbon dioxide, nitrogen, and phosphate removals from wastewater using microalgae have extensively been studied. Especially, the green colonial algae Botryococcus braunii is characterized by unusual high hydrocarbon contents, ranging from 15 to 75% of dry weight, as long-chain unsaturated hydrocarbons. These hydrocarbons suggest that the possibility of renewable biofuels to be converted into useful fuels such as gasoline by simple catalytic cracking. The poor recovery (18 - 32%) of hydrocarbon from B. braunii culture in two-phase bubble column seems to be caused by insufficient mixing between two phases, which was operated using only aeration on the narrow interface between hydrophobic solvent and cell suspension. In addition, hydrocarbon was entrapped tightly in cell-matrix (formed by exopolysaccharide) of algal colony, which make difficult to extract using two-phase system. In order to overcome low recovery efficiency, two-stage extraction culture system including culture vessel and two-phase separator is now under development, resulted improving contact between solvent phase and cell suspension. Hydrocarbon recovery using this process was more than two times as that using two-phase extraction culture.

  • PDF

Optimization of Catechol Production Using Immobilized Resting Cells of Pseudomonas putida in Aqueous/organic Two-phase System

  • Chae, Hee-Jeong;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.345-351
    • /
    • 1997
  • An aqueous/organic two-phase reaction system was applied to the production of catechol using immobilized resting cells of Pseudomonas putida CY 400. Water/ethyl ether system was used because of high partition coefficient of catechol and thus to reduce the product inhibition and degradation. Among the tested immobilization carriers, polyacrylamide gel gave the highest catechol productivity. The immobilization seemed to protect the cells against solvent toxicity. From the simulation of reaction conditions based on two-phase models, it was found that there was an optimum acetate concentration at fixed benzoate and cell concentrations for the catechol productivity. A lower phase volume ratio (lower fraction of organic phase) gave a higher productivity. However, the substrate conversion was low at low phase volume ratio.

  • PDF