• Title/Summary/Keyword: two-node problem

Search Result 296, Processing Time 0.022 seconds

One-node and two-node hybrid coarse-mesh finite difference algorithm for efficient pin-by-pin core calculation

  • Song, Seongho;Yu, Hwanyeal;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.327-339
    • /
    • 2018
  • This article presents a new global-local hybrid coarse-mesh finite difference (HCMFD) method for efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)-based two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems with boundary conditions of incoming partial current, and they can be solved in parallel. The global problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method. We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD algorithm was also parallelized with the OpenMP parallel interface, and its numerical performances were evaluated for several benchmarks.

Designing hierarchical ring-star networks under node capacity constraints (설비용량을 고려한 계층적 네트워크의 설계 및 분석)

  • 이창호;윤종화;정한욱
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.69-83
    • /
    • 1994
  • This paper deals with a capacitated ring-star network design problem (CRSNDP) with node capacity constraints. The CRSNDP is formulated as a mixed 0-1 integer problem, and a 2-phase heuristic solution procedure, ADD & VAM and RING, is developed, in which the CRSNDP is decomposed into two subproblems : the capacitated facility location problem (CFLP) and the traveling sales man problem (TSP). To solve the CFLP in phase I the ADD & VAM procedure selects hub nodes and their appropriate capacity from a candidate set and then assigns them user nodes under node capacity constraints. In phase II the RING procedure solves the TSP to interconnect the selected hubs to form a ring. Finally a solution of the CRSNDP can be achieved through combining two solution of phase I & II, thus a final design of the capacitated ring-star network is determined. The analysis of computational results on various random problems has shown that the 2-phase heuristic procedure produces a solution very fast even with large-scale problems.

  • PDF

On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses- (6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석-)

  • 김정운;정래훈;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

Problem-dependent cubic linked interpolation for Mindlin plate four-node quadrilateral finite elements

  • Ribaric, Dragan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1071-1094
    • /
    • 2016
  • We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral plate finite elements with 12 external degrees of freedom that pass the constant bending patch test for arbitrary node positions of which the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form. The new elements are compared to the existing linked-interpolation quadratic and nine-node cubic elements presented by the author earlier and to the other elements from literature that use the cubic linked interpolation by testing them on several benchmark examples.

Analysis and Classfication of Heuristic Algorithms for Node Coloring Problem (노드채색문제에 대한 기존 해법의 분석 및 분류)

  • 최택진;명영수;차동완
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.3
    • /
    • pp.35-49
    • /
    • 1993
  • The node coloring problem is a problem to color the nodes of a graph using the minimum number of colors possible so that any two adjacent nodes are colored differently. This problem, along with the edge coloring problem, has a variety of practical applications particularly in item loading, resource allocation, exam timetabling, and channel assignment. The node coloring problem is an NP-hard problem, and thus many researchers develop a number of heuristic algorithms. In this paper, we survey and classify those heuristics with the emphasis on how an algorithm orders the nodes and colors the nodes using a determined ordering.

  • PDF

Two Phase Heuristic Algorithm for Mean Delay constrained Capacitated Minimum Spanning Tree Problem (평균 지연 시간과 트래픽 용량이 제한되는 스패닝 트리 문제의 2단계 휴리스틱 알고리즘)

  • Lee, Yong-Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.367-376
    • /
    • 2003
  • This study deals with the DCMST (Delay constrained Capacitated Minimum Spanning Tree) problem applied in the topological design of local networks or finding several communication paths from root node. While the traditional CMST problem has only the traffic capacity constraint served by a port of root node, the DCMST problem has the additional mean delay constraint of network. The DCMST problem consists of finding a set of spanning trees to link end-nodes to the root node satisfying the traffic requirements at end-nodes and the required mean delay of network. The objective function of problem is to minimize the total link cost. This paper presents two-phased heuristic algorithm, which consists of node exchange, and node shift algorithm based on the trade-off criterions, and mean delay algorithm. Actual computational experience and performance analysis show that the proposed algorithm can produce better solution than the existing algorithm for the CMST problem to consider the mean delay constraint in terms of cost.

Design of Zigbee Beacon Frame for High Efficiency Transmit in Home Network (홈 네트워크에서 고효율 전송을 위한 Zigbee Beacon Frame 설계)

  • Han, Kyoung-Heon;Han, Seung-Jo;Choi, Hyun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1373-1382
    • /
    • 2011
  • Zigbee is communication technology most ideal because Zigbee support low power communication and wide expansion in wireless home network. However, Zigbee is not popular, because of Zigbee always has Hidden Node Problem and Transit Delay Problem. We propose new Beacon Frame structure to solve the two problem in Zigbee. New Beacon Frame structure reduces a Super Frame Duration and add a same space of a Control Frame Duration. We expect to solved method of Hidden Node Problem that exchange terminal information to using RTS/CTS. Also, We expect to solved method of Transit Delay Problem that put Beacon between Control Frame Duration and Super Frame Duration for synchronization. We confirm new Beacon Frame to solved two problem in OPNET simulation at Zigbee QoS Parameters. We measure Delay(sec) for solution degree of Transit Delay Problem, and measure Throughput(bits/sec) and Load (bits/sec) for solution degree of Hidden Node Problem.

Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks

  • Yu, Wenjie;Li, Xunbo;Li, Xiang;Zeng, Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2889-2909
    • /
    • 2017
  • Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their potential for various applications. In this paper, we seek how to efficiently deploy relay nodes into traditional static WSNs with constrained locations, aiming to satisfy specific requirements of the industry, such as average energy consumption and average network reliability. This constrained relay node deployment problem (CRNDP) is known as NP-hard optimization problem in the literature. We consider addressing this multi-objective (MO) optimization problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search (MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different MO trajectory algorithms are included for comparison. We employ these metaheuristics on a test data set obtained from the literature. For an in-depth analysis of the behavior of the MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to analyze the results. After studying the results, it is concluded that constrained relay node deployment using the MOABCLLS outperforms the performance of the other algorithms, based on two MO quality metrics: hypervolume and coverage of two sets.

Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem (이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법)

  • Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • In this paper, the approximately coupled method of finite element method and boundary element method to obtain efficient and accurate analysis results is proposed for a two-dimensional elasto-static problem with a geometrically abruptly changing part. As the finite element of a two-dimensional problem, three-node and four-node plane stress element is applied, and as the boundary element of a two-dimensional problem, three-node boundary element is applied. In the modeling stage, firstly, an entire analysis target object is modeled as finite elements, and then a geometrically abruptly changing part is modeled as boundary elements. The boundary element is defined using the nodes defined for modeling finite elements. In the analysis stage, finite element analysis is firstly performed on a entire analysis target object, and boundary element analysis is automatically performed afterwards. As for the boundary conditions at boundary element analysis, displacement conditions and stress conditions, which are the results of finite element analysis, are applied. As a numerical example, the analysis results for a two-dimensional elasto-static problem, a plate with a crack, are presented and investigated.

A Study on the G-Node and Disconnected Edges to Improve the Global and Local Locating Heuristic for GOSST Problem (GOSST 문제에 대한 전역적 배치와 지역적 배치 휴리스틱의 개선을 위한 G-Node와 단절에 관한 연구)

  • Kim, In-Bum;Kim, Chae-Kak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9B
    • /
    • pp.569-576
    • /
    • 2007
  • This paper is on the enhancement of our heuristics for GOSST problem that could apply to the design of communication networks offering graduated services. This problem hewn as one of NP-Hard problems finds a network topology meeting the G-Condition with minimum construction cost. In our prior research, we proposed two heuristics. We suggest methods of selecting G-Node and disconnections for Global or Local locating heuristic in this research. The ameliorated Local locating heuristic retrenches 17% more network construction cost saving ratio and the reformed Global locating heuristic does 14% more than our primitives.