• 제목/요약/키워드: two-legged walking

검색결과 18건 처리시간 0.026초

A Study on The Implementation of Stable and High-speed Humanoid Robot (ICCAS 2004)

  • Kim, Seung-Woo;Jung, Yong-Rae;Jang, Kyung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1440-1443
    • /
    • 2004
  • Most previous robots had used the wheels as means for movement. These structures were relatively simple and easy to control and this is why the method had been used until currently. However, there are many realistic problems to move from one place to another in human life, for instance, steps and edges. So we need to develop the two-legged walking humanoid robot. The 2-legged walking Robot system has been vigorously developed in so many corporations and academic circles of several countries. However, 2-legged walking Robot has been mostly studied in view of the static walk. We design a stable humanoid Robot which can walk in high-speed through the research of the dynamic walk in this paper. Especially, worldwide companies have been interested in developing humanoid robots for a long time to solve the before mentioned problems so that they can become more familiar with the human form. The most important thing, for the novel two-legged walk, is to create a stable and fast walking in two-legged robots. For realization of this movement, an optimal mechanical design of 12 DOFS, a distributed control and a parallel processing control are implemented in this paper. This paper proves that high speed and stable walking can be achieved, through experiments.

  • PDF

복합 링크기구를 이용한 다족 보행로봇 (Multi-legged Walking Robot Using Complex Linkage Structure)

  • 임상현;이동훈;강현창;김상현
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

A Method of Adaptive Leg-end Trajectory Control for a Five-legged Walking Robot

  • Tsunehon, Honda;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.83.3-83
    • /
    • 2001
  • A method to adaptively control leg-ends trajectories of a five-legged walking robot, Cepheus-2, has been developed in terms of a kind of a table look-up method. Cepheus-2 is a five-legged robot with a pentagonal body with two joints of each leg. The robot control system has a hierarchical autonomic-integrated architecture with a main computer (PC), a manager and servo modules. Being given the goals of walking by the main computer, the manager module assigns a type of leg-end trajectories of which data are described with the work space coordinates for the legs. Every servo module generates the joint angle data. In steady walking of the robot on flat floor without obstacle, two joints have to generate the assigned trajectory and five legs ...

  • PDF

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

근골격 모델과 참조 모션을 이용한 이족보행 강화학습 (Reinforcement Learning of Bipedal Walking with Musculoskeletal Models and Reference Motions)

  • 전지웅;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권1호
    • /
    • pp.23-29
    • /
    • 2023
  • 본 논문은 강화학습을 통해 이족보행에 대한 모션 캡처를 통해 참조 모션의 데이터들을 기반으로 근골격 캐릭터의 시뮬레이션을 적은 비용으로 높은 품질의 결과를 얻을 방법을 소개한다. 우리는 참조 모션 데이터를 캐릭터 모델이 수행할 수 있게끔 재설정을 한 후, 강화학습을 통해 해당 모션을 학습하도록 훈련시킨다. 참조 모션 모방과 근육에 대한 최소한의 메타볼릭 에너지를 결합하여 원하는 방향으로 근골격 모델이 이족보행을 수행하게끔 학습한다. 이러한 방법으로 근골격 모델은 기존의 수동으로 설계된 컨트롤러보다 적은 비용으로 학습할 수 있으며 높은 품질의 이족보행을 수행할 수 있게 된다.

다족 보행 로봇 시스템의 이동성 및 민첩성 (Mobility and Agility of Multi-legged Walking Robot System)

  • 심형원;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

다각 보행 로보트를 위한 힘 제어 (Force Control for a Multi-legged Walking Robot)

  • 이도남;이병일;신유식;임준홍;서일홍;변증남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.693-697
    • /
    • 1989
  • In this paper, force control for a multi-legged walking robot is investigated. For stable but relatively rapid walking, a simple force control algorithm is proposed in conjunction with the position control system. The proposed control method is tested on an experimental one leg system of two degree of freedom with a force controller using a position controller and a monoboard microcomputer to implement the proposed control algorithm. The experimental results shows that the control algorithm can be applied for walking in a terrain with wide range variation.

  • PDF

4족 보행 로봇의 에너지효율에 관한 연구 (A Study on Energy Efficiency of Quadruped Walking Robot)

  • 안병원;배철오;박영산;박중순;이성근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.309-312
    • /
    • 2003
  • 다리를 가진 로봇은 지형에 대한 높은 적응능력을 가졌다할지라도 바퀴의 차량과 비교했을 때 일반적으로 그 속도가 상당히 낮다. 다리를 가진 로봇으로 빨리 움직이는 속도를 얻기 위해서는 두발 로봇의 달림과 4족 로봇의 속보나 뛰는 것과 같이 동적으로 안정한 걸음걸이가 좋은 해결법이다. 그러나 동적으로 안정한 걸음걸이의 에너지 효율은 일반적으로 느린 걸음걸이와 같은 안정한 걸음걸이보다 낮다. 본 논문에서는 네발로 걷는 로봇의 에너지 효율에 관한 실험적 연구를 보여준다. 빠른 걸음걸이의 2가지 패턴의 에너지 소모에 대한 TITAN-VIII을 이용한 실험을 통해 연구하였다.

  • PDF

비평탄 지형에서 사각 보행 로봇의 고장후 보행 (Post-Failure Walking of Quadruped Robots on a Rough Planar Terrain)

  • 양정민;박용국
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권9호
    • /
    • pp.547-555
    • /
    • 2005
  • A fault-tolerant gait of multi-legged robots with static walking is a gait which can maintain gait stability and continue its walking against an occurrence of a leg failure. This paper proposes fault-tolerant gait planning of a quadruped robot walking over a rough planar terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. In this Paper, two-phase discontinuous gaits are presented as a new fault-tolerant gait for quadruped robots suffering from a locked joint failure. By comparing with previously developed one-phase discontinuous gaits, it is shown that the proposed gait has great advantages in gait performance such as the stride length and terrain adaptability. Based on the two-phase discontinuous gait, quasi follow-the-leader(FTL) gaits are constructed which enable a quadruped robot to traverse two-dimensional rough terrain after an occurrence of a locked joint failure. During walking, two front legs undergo the foot adjustment procedure for avoiding stepping on forbidden areas. The Proposed wait planning is verified by using computer graphics simulations.

결합 가능한 모듈형 4족 로봇의 설계 및 작업 계획에 대한 연구 (A Study on Task Planning and Design of Modular Quadruped Robot with Docking Capability)

  • 선은혜;김용태
    • 한국지능시스템학회논문지
    • /
    • 제26권3호
    • /
    • pp.169-175
    • /
    • 2016
  • 최근 다양한 환경에서 지능형 로봇의 안정된 이동과 작업계획에 대한 연구가 이루어지고 있다. 본 논문에서는 상하 결합가능한 구조의 4족 로봇의 설계 및 작업 계획방법을 제안한다. 제안하는 4족 로봇은 리니어 모터를 이용하여 다리 길이를 조절하고, 팔각뿔 형태의 도킹모듈을 이용하여 상하 결합과 분리가 가능하도록 설계하였다. 또한 로봇이 다양한 환경에서 안정된 이동과 정보 수집을 위하여 지자기 센서, PSD 센서, LRF 센서와 카메라를 사용하였다. 리니어 모터를 이용한 장애물 회피 동작방법과 상하 결합 동작방법을 제안하고 구현하였다. 로봇은 다리 길이를 조절하여 장애물을 극복하고, 두 대의 로봇이 상하 결합을 통하여 협력 작업방법을 제안하였다. 두 대의 4족 로봇이 상하 결합을 통하여 4족과 6족 보행을 하고, 상부 결합 로봇의 4개의 다리를 4개의 팔 또는 2개의 팔로 사용할 수 있으며, 결합된 로봇을 이용하여 물건 옮기기 작업을 구현하고, 각 동작들을 실제 실험으로 기능을 검증하였다.