• Title/Summary/Keyword: two-dimensional shapes

Search Result 360, Processing Time 0.026 seconds

A Study on Shape Matching of Two-Dimensional Object using Relaxation (Relaxation을 이용한 2차원 물체의 형상매칭에 관한 연구)

  • 곽윤식;이대령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-142
    • /
    • 1993
  • This paper prrsents shape matching of two-dimensional object. This shape matching is applied to two-dimensional simple c10sedcurves represented by polygons. A large number of shape matching procedures have proposed baseed on teh view that shape can be represented by a vector of numerical features, and that this representation can be matched using techniques from statical pattern recognition. The varieties of features that have been extracted from shapes and used to represent them are numerous. But all of these feature-based approches suffer from the shortcoming that the descriptor of a segment of a shape do not ordinarily bear any simple relations hip to the description for the entire shape. We solve the segment matching problem of shape matching, defined as the recognition of a piece of a shape as approximate match to a part of large shape, by using relaxation labeling technique.

  • PDF

Numerical Simulation of Two-dimensional Floating Body Motion in Waves Using Particle Method (입자법에 의한 파랑중 2차원 부유체 운동 시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • A moon-pool is a vertical well in a floating barge, drilling ship, or offshore support vessel. In this study, numerical simulation of two-dimensional moon-pool flaw coupled with a ship's motion in waves is carried out using a particle method, the so-called MPS method. The particle method, which is recognized as one of the gridless methods, was developed to investigate nonlinear free-surface motions interacting with structures. The method is more feasible and effective than convectional grid methods in order to solve a flaw field with complicated boundary shapes.

Qualitative Analysis of Film Thickness in Elastohydrodynamic Lubrication (탄성 유체 윤활에서의 유막 두께 측정에 관한 정성적 분석)

  • 최언진;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.147-155
    • /
    • 1999
  • The film thickness and shape of elastohydrodynamic lubrication is measured by optical interferometer, which is the most precise method for EHL film measurement. However the interpretation of the image pattern from optical viscometer is not easy for two-dimensional shape. A newly developed method of image processing makes it possible to evaluate the film thickness and shape in every point of contact region with two dimensional aspects. In this study, we captured film shape of EHL film from the monochromatic incident light with the Image processing method, which uses phase shift method, and obtained the image analysis method for gray level image in order to qualitatively evaluate film shapes.

  • PDF

Simulation of a Rotating Chain with an Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 회전체인의 시뮬레이션)

  • Yoo, Wan-Suk;Dmitrochenko, Oleg;Pogorelov, Dmitry
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.649-654
    • /
    • 2004
  • A physically simple but mathematically cumbrous problem of rotating heavy chain with one fixed top point is studied. Nonlinear equation of its two-dimensional shapes of relative equilibrium is obtained and solved numerically. A linear case of small displacements is analyzed in terms of Bessel functions. The qualitative and quantitative behavior of the problem is discussed with the help of bifurcation diagram. Dynamics of the two-dimensional model near the equilibrium positions is studied with the help of simulation using the absolute nodal coordinate formulation (ANCF). The equilibriums are found instable, and the reason of instability is explained using a variational principle.

  • PDF

A Study on the Roles of Shape Properties in Evaluation of Aesthetics values on Shapes (형태속성이 미학 특성 인지 과정에 미치는 영향에 관한 연구)

  • Cha Myung-Yeol
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.2 s.49
    • /
    • pp.197-205
    • /
    • 2005
  • In estimating designed architectural buildings, many factors in various design domains such as function, structure, form, environment may be considered and then a building design might be selected or modified as final design from many possible design results. This paper proposed a method to obtain complexity values from two dimensional drawings which are floor plans or elevations. The Complexity values could be turned into esthetic values. The method has been developed based on information theory, shape pattern representation and cognitive theory. Results of measuring complexity value can make the computer evaluate and select final results produced from automatic design processes by the computer That is to say, aesthetic values based on order and chaos can be measured using complexity values and then some results having superior values can be selected as final result. Also some cognitive processes as perception of two dimensional drawings are discussed using shape representations. Aesthetic values could be varied in terms of shape properties such as size, individualities and knowledge as well as order and chaos.

CFD calculations of indicial lift responses for bluff bodies

  • Turbelin, Gregory;Gibert, Rene Jean
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.245-256
    • /
    • 2002
  • Two-dimensional formulations for wind forces on elongated bodies, such as bridge decks, are reviewed and links with expressions found in two-dimensional airfoil theory are pointed out. The present research focus on indicial lift responses and admittance functions which are commonly used to improve buffeting analysis of bluff bodies. A computational fluid dynamic (CFD) analysis is used to derive these aerodynamic functions for various sections. The numerical procedure is presented and results are discussed which demonstrate that the particular shapes of these functions are strongly dependent on the evolution of the separated flows around the sections at the early stages.

Bending Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structures (직조 탄소섬유 발포 고분자 샌드위치 구조의 굽힘특성)

  • Chang Seung Hwan;Jang Tae Seong;Choi Jin Ho;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.131-134
    • /
    • 2004
  • In this paper, a representative unit volume (RUV) model was employed to simulate thermoforming process of carbon fabric-polymeric foam sandwich structures. Thermoforming simulations, which capture crimp angles and amplitude changes of carbon fabric with respect to different types of foams under the operating pressure were conducted with the help of RUV model. Changed shapes of tow structure after thermoforming were reflected in the two dimensional to determine mechanical properties of skin parts, i.e_ carbon fabric composites after thermoforming. Bending simulations with respect to different foam systems as well as different moduli of carbon fabric composites were successfully carried out by using properties obtained from two-dimensional analyses.

  • PDF

Measurement of Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes (사각홀에서 막냉각 효율 및 열전달계수의 측정)

  • 이윤석;이동호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.365-376
    • /
    • 2002
  • An experimental study has been conducted to measure the local film-cooling effectiveness and the heat transfer coefficient for a single row of rectangular-shaped holes. four different cooling hole shapes such ai a straight rectangular hole, a rectangular hole with laterally expanded exit, a circular hole and a two-dimensional slot are tested. A technique using thermochromic liquid crystals determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. Both film cooling effectiveness and heat transfer coefficient are measured for various blowing rates and compared with the results of the cylindrical ho1es and the two-dimensional slot. The flow patterns downstream of holes are calculated numerically using a cummercial package. The results show that the rectangular hopes provide better peformance than the cylindrical holes. For the rectangular holes with expanded exit, the penetration is reduced significantly, and the higher and more uniform cooling Peformance is obtained even at relatively high blowing rates.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

Enhanced Cathode-Luminescence in a InxGa1-xN/InyGa1-y Green Light Emitting Diode Structure Using Two-Dimensional Photonic Crystals

  • Choi, Eui-Sub;Lee, Jae-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.276-279
    • /
    • 2008
  • We report on the enhancement of cathode-luminescence in an $In_xGa_{1-x}N/In_yGa_{1-y}$ green light emitting diode structure using two-dimensional photonic crystals. The square lattice arrays of photonic crystals with diameter/periodicity of 200/500 nm were fabricated by electron beam lithography. Inductively coupled plasma dry etching was used to etch and define photonic crystals. Three samples with different etch depths, i.e., 170, 95, and 65 nm, were constructed. Field emission scanning electron microscope analysis shows that air holes of photonic crystal structure with inverted-cone shapes were fabricated after dry etching. Cathode-luminescence measurement indicated that up to 30-fold enhancement of cathode-luminescence intensity has been achieved.