• Title/Summary/Keyword: two-dimensional polymer

Search Result 187, Processing Time 0.028 seconds

Structures of Two-dimensional Ring Polymer Solutions using Bond Fluctuation Model

  • Shin, Donghan;Lee, Eunsang;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.155-162
    • /
    • 2016
  • This study attempts to reveal structures of two-dimensional ring polymer solutions in various polymer concentrations ranging from dilute to concentrated regime. Polymer sizes, single molecule structure factors, bond correlation functions and monomer density distribution functions from center of mass are given in order to clarify the polymer structures. Our study shows that a ring in dilute solution maintain pseudo-circular structure with self-avoiding walk (SAW) statistics, and it seems to be composed of two connecting SAW linear chains. In semidilute solutions, ring polymers are not entangled with each other and adopt collapsed configurations. Such assumption of collapsed structures in the semidilute regime gives an overlap concentration of ${\varphi}^*{\sim}N^{-1/2}$ where N is degree of polymerization. By normalizing the polymer concentration by these overlap concentration, we find universal behaviors of polymer sizes and structure factors regardless of N.

  • PDF

Two-Dimensional Raman Correlation Spectroscopy Study of the Pathway for the Thermal Imidization of Poly(amic acid)

  • Han Yu, Keun-Ok;Yoo, Yang-Hyun;Rhee, John-Moon;Lee, Myong-Hoon;Yu, Soo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.357-362
    • /
    • 2003
  • The pathway producing imide ring closure during the thermal imidization of poly(amic acid) (PAA) was investigated in detail using a new analytical method, two-dimensional (2D) Raman correlation spectroscopy. The signs of the cross peaks in synchronous spectra provided evidence of the thermal imidization of PAA into PI as the heating temperature increased. The signs of the cross peaks in asynchronous spectra suggested that the imide-related modes changed prior to the amide or carboxylic mode, which indicates that cyclization occurred before the amide proton was abstracted.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

Trends in Polymer Separations: Better and More Information on Polymer Distributions

  • Schoenmakers, Peter
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.113-113
    • /
    • 2006
  • Polymer separations are used to obtain information on molecular distributions (molecular-weight distribution, chemical-composition distribution, functionality-type distribution, etc.). The existing methods, such as size-exclusion chromatography are reliable, but imperfect. New methods and improvements to existing methods are being studied and some of the results will be discussed. In addition, comprehensive two-dimensional liquid chromatography allows the complete characterization of two mutually dependent distributions. LCxSEC chromatograms provide a very good qualitative impression of the distributions, but calibration is not straightforward. Finally, progress in mass spectrometry allows much better information to be obtained.

  • PDF

Effect of Transesterification on the Characteristics of PET/PEN Blend Flexible Substrate (상호에스테르 교환반응이 폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 블렌드 유연기관 특성에 미치는 영향)

  • Kim, Jae-Hyun;Kim, Whan-Ki;Yum, Ju-Sun;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.249-253
    • /
    • 2011
  • The effect of morphological development in PET/PEN blending on the physical properties of PET/PEN blend film as a flexible substrate was investigated. The two phase morphology was obtained in PET/PEN blends and it caused the improvement of dimensional stability of PET/PEN blend as a flexible substrate. The two phase morphology and crystallinity of PET/PEN blends could be controlled by the transesterification between PET and PEN during the film processing and this macroscopic structural development affected the dimensional stability of PET/PEN blend films. Better dimensional stability was obtained with increasing crystallinity and decreasing the level of transesterification.

Structure and Dynamics of Dilute Two-Dimensional Ring Polymer Solutions

  • Oh, Young-Hoon;Cho, Hyun-Woo;Kim, Jeong-Min;Park, Chang-Hyun;Sung, Bong-June
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.975-979
    • /
    • 2012
  • Structure and Dynamics of dilute two-dimensional (2D) ring polymer solutions are investigated by using discontinuous molecular dynamics simulations. A ring polymer and solvent molecules are modeled as a tangent-hard disc chain and hard discs, respectively. Some of solvent molecules are confined inside the 2D ring polymer unlike in 2D linear polymer solutions or three-dimensional polymer solutions. The structure and the dynamics of the 2D ring polymers change significantly with the number ($N_{in}$) of such solvent molecules inside the 2D ring polymers. The mean-squared radius of gyration ($R^2$) increases with $N_{in}$ and scales as $R{\sim}N^{\nu}$ with the scaling exponent $\nu$ that depends on $N_{in}$. When $N_{in}$ is large enough, ${\nu}{\approx}1$, which is consistent with experiments. Meanwhile, for a small $N_{in}{\approx}0.66$ and the 2D ring polymers show unexpected structure. The diffusion coefficient (D) and the rotational relaxation time ($\tau_{rot}$) are also sensitive to $N_{in}$: D decreases and $\tau$ increases sharply with $N_{in}$. D of 2D ring polymers shows a strong size-dependency, i.e., D ~ ln(L), where L is the simulation cell dimension. But the rotational diffusion and its relaxation time ($\tau_{rot}$) are not-size dependent. More interestingly, the scaling behavior of $\tau_{rot}$ also changes with $N_{in}$; for a large $N_{in}$ $\tau_{rot}{\sim}N^{2.46}$ but for a small $N_{in}$ $\tau_{rot}{\sim}N^{1.43}$.

Synthesis and Structural Characterization of the One-Dimensional Cadmium(II) Complex with Thiocyanate and 4-Methylimidazole Ligands (티오시아네이트 및 4-메틸이미다졸 리간드로 구성된 1차원 카드뮴(II) 착물의 합성과 구조 분석)

  • Moon, Hyoung-Sil;Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.535-539
    • /
    • 2001
  • One-dimensional coordination polymer of cadmium(II) complex, $[Cd(SCN)_2(C_4H_6N_2]_n$, has been prepared and characterized by X-ray single crystallography. Structure analysis reveals that each cadmium(II) atom is six-coordinated in distorted octahedral fashion with $CdS_2N_4$ composition. $CdS_2N_4$ composition contains two S and two N atoms from four thiocyanates and tow N atoms from two 4-methylimidazole ligands. Central cadmium(II) atoms are run in parallel to the a-axis and are doubly bridged with neighboring cadmium(II) atoms by the thiocyanate and isothiocyanate ligands. Thus, this complex has a one-dimensional polymer structure in which the 4-methylimidazole is in the trans conformation.

  • PDF