• Title/Summary/Keyword: two-dimensional detection

Search Result 347, Processing Time 0.026 seconds

Parallel Writing and Detection for Two Dimensional Magnetic Recording Channel

  • Zhang, Yong;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.821-826
    • /
    • 2012
  • Two-dimensional magnetic recording (TDMR) is treated as the next generation magnetic recording method, but because of its high channel bit error rate, it is difficult to use in practices. In this paper, we introduce a new writing method that can decrease the nonlinear media error effectively, and it can also achieve 10 Tb/$in^2$ of user bit density on a magnetic recording medium with 20 Teragrains/$in^2$.

An Improved Defect Detection Algorithm of Jean Fabric Based on Optimized Gabor Filter

  • Ma, Shuangbao;Liu, Wen;You, Changli;Jia, Shulin;Wu, Yurong
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1008-1014
    • /
    • 2020
  • Aiming at the defect detection quality of denim fabric, this paper designs an improved algorithm based on the optimized Gabor filter. Firstly, we propose an improved defect detection algorithm of jean fabric based on the maximum two-dimensional image entropy and the loss evaluation function. Secondly, 24 Gabor filter banks with 4 scales and 6 directions are created and the optimal filter is selected from the filter banks by the one-dimensional image entropy algorithm and the two-dimensional image entropy algorithm respectively. Thirdly, these two optimized Gabor filters are compared to realize the common defect detection of denim fabric, such as normal texture, miss of weft, hole and oil stain. The results show that the improved algorithm has better detection effect on common defects of denim fabrics and the average detection rate is more than 91.25%.

A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code (2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법)

  • Park, Kwang Wook;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.159-175
    • /
    • 2015
  • The two-dimensional QR code has advantages such as directional nature, enough data storage capacity, ability of error correction, and ability of data restoration. There are two major issues like speed and correctiveness of recognition in the two-dimensional QR code. Therefore, this paper proposes a morphology-based algorithm of detecting the interest region of a barcode. Our research contents can be summarized as follows. First, the interest region of a barcode image was detected by close operations in morphology. Second, after that, the boundary of the barcode are detected by intersecting four cross line outside in a code. Three, the projected image is then rectified into a two-dimensional barcode in a square shape by the reverse-perspective transform. In result, it shows that our detection and recognition rates for the barcode image is also 97.20% and 94.80%, respectively and that outperforms than previous methods in various illumination and distorted image environments.

Fingerprint Detection Using Canny Filter and DWT, a New Approach

  • Islam, Md. Imdadul;Begum, Nasima;Alam, Mahbubul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • This paper proposes two new methods to detect the fingerprints of different persons based on one-dimensional and two-dimensional discrete wavelet transformations (DWTs). Recent literature shows that fingerprint detection based on DWT requires less memory space compared to pattern recognition and moment-based image recognition techniques. In this study four statistical parameters - cross correlation co-efficient, skewness, kurtosis and convolution of the approximate coefficient of one-dimensional DWTs are used to evaluate the two methods involving fingerprints of the same person and those of different persons. Within the contexts of all statistical parameters in detection of fingerprints, our second method shows better results than that of the first method.

Seafloor terrain detection from acoustic images utilizing the fast two-dimensional CMLD-CFAR

  • Wang, Jiaqi;Li, Haisen;Du, Weidong;Xing, Tianyao;Zhou, Tian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.187-193
    • /
    • 2021
  • In order to solve the problem of false terrains caused by environmental interferences and tunneling effect in the conventional multi-beam seafloor terrain detection, this paper proposed a seafloor topography detection method based on fast two-dimensional (2D) Censored Mean Level Detector-statistics Constant False Alarm Rate (CMLD-CFAR) method. The proposed method uses s cross-sliding window. The target occlusion phenomenon that occurs in multi-target environments can be eliminated by censoring some of the large cells of the reference cells, while the remaining reference cells are used to calculate the local threshold. The conventional 2D CMLD-CFAR methods need to estimate the background clutter power level for every pixel, thus increasing the computational burden significantly. In order to overcome this limitation, the proposed method uses a fast algorithm to select the Regions of Interest (ROI) based on a global threshold, while the rest pixels are distinguished as clutter directly. The proposed method is verified by experiments with real multi-beam data. The results show that the proposed method can effectively solve the problem of false terrain in a multi-beam terrain survey and achieve a high detection accuracy.

Properties of Two-dimensional M-transform with Applications to Image Processing

  • Kashiwagi, Hiroshi;Harada, Hiroshi;Yamaguchi, Teruo;Andoh, Toshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.86.4-86
    • /
    • 2002
  • 1. Review of one dimensional M-transform 2. Definition of two dimensional(2D)M-transform 3. Properties of 2D M-transform 4. Mean, Autocorrelation 5. Crosscorrelation of input and output of a system 6. Application to fault detection of mechanical shape

  • PDF

Performance of Two-Dimensional Soft Output Viterbi Algorithm for Holographic Data Storage (홀로그래픽 저장장치를 위한 2차원 SOVA 성능 비교)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.815-820
    • /
    • 2012
  • We introduce two-dimensional soft output Viterbi algorithm (2D SOVA) and iterative 2D SOVA for holographic data storage. Since the holographic data storage is 2D intersymbol interference (ISI) channel, the 2D detection schemes have good performance at holographic data storage. The 2D SOVA and iterative 2D SOVA are 2D detection schemes. We introduce and compare the two 2D detection schemes. The 2D SOVA is approximately 2 dB better than one-dimensional (1D) detection scheme, and iterative 2D SOVA is approximately 1 dB better than the 2D SOVA. In contrast, the iterative 2D SOVA is approximately twice complex higher than 2D SOVA, and 2D SOVA is approximately twice complex higher than 1D detection scheme.

Realization for Moving Object Tracking System in Two Dimensional Plane using Stereo Line CCD

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sun, Min-Gui;Sclabassi, Robert
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.157-160
    • /
    • 2008
  • A realization for moving object detecting and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. Instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution and mean error is 1.89%, and enables to track a moving path of object per 100ms period.

  • PDF

A real-time QRS complex detection algorithm using topological mapping in ECG signals (심전도 신호의 위상학적 팹핑을 이용한 실시간 QRS 검출 알고리즘)

  • 이정환;정기삼;이병채;이명호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.48-58
    • /
    • 1998
  • In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.

  • PDF

A leak detection and 3D source localization method on a plant piping system by using multiple cameras

  • Kim, Se-Oh;Park, Jae-Seok;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.155-162
    • /
    • 2019
  • To reduce the secondary damage caused by leakage accidents in plant piping systems, a constant surveillance system is necessary. To ensure leaks are promptly addressed, the surveillance system should be able to detect not only the leak itself, but also the location of the leak. Recently, research to develop new methods has been conducted using cameras to detect leakage and to estimate the location of leakage. However, existing methods solely estimate whether a leak exists or not, or only provide two-dimensional coordinates of the leakage location. In this paper, a method using multiple cameras to detect leakage and estimate the three-dimensional coordinates of the leakage location is presented. Leakage is detected by each camera using MADI(Moving Average Differential Image) and histogram analysis. The two-dimensional leakage location is estimated using the detected leakage area. The three-dimensional leakage location is subsequently estimated based on the two-dimensional leakage location. To achieve this, the coordinates (x, z) for the leakage are calculated for a horizontal section (XZ plane) in the monitoring area. Then, the y-coordinate of leakage is calculated using a vertical section from each camera. The method proposed in this paper could accurately estimate the three-dimensional location of a leak using multiple cameras.