• Title/Summary/Keyword: two- and three-dimensional model

Search Result 1,461, Processing Time 0.029 seconds

A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan (허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구)

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

Determination of Priority for Improvement Using the Theory of Two-dimensional Quality (품질의 이원론을 이용한 개선의 우선순위 결정)

  • Song, Hae Geun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.70-77
    • /
    • 2013
  • The theory of two-dimensional quality, in particular, the Kano model that is developed by the analogy with the M-H theory, has been applied in various industry fields for more than three decades. Importance-Performance Analysis (IPA) assumes that the degree of physical fulfilment of quality attributes and the satisfaction of that attribute is linear, and therefore, it is applicable to the traditional one-dimensional attribute, not other quality types defined in the Kano's model such as attractive or must-be attribute. To solve this problem, the current study suggests a new importance-satisfaction analysis using a modified IPA in accordance with the three quality types and a diagonal method introduced by Slack (1999) to determine improvement priority. For this, I investigated 19 smartphone's quality attributes and conducted a survey of 334 university students for the results of Kano's model, which adopted from Song and Park (2012)'s study, and the importance/satisfaction of the quality attributes and the results of the priority for improvement of the 19 quality attributes. The results show that the proposed I-S priority model is better than the conventional IPA based on the comparison results of determination coefficient from the regression analysis of the two models.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

Prediction of Three Dimensional Turbulent flows around a MIRA Vehicle Model (MIRA Vehicle Model 주위의 3차원 난류유동 예측)

  • 명현국;진은주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.86-96
    • /
    • 1998
  • A numerical study has been carried out of three-dimensional turbulent flows around a MIRA reference vehicle model both with and without wheels in computation. Two convective difference schemes with two k-$\varepsilon$ turbulence models are evaluated for the performance such as drag coefficient, velocity and pressure fields. Pressure coefficients along the surfaces of the model are compared with experimental data. The drag coefficient, the velocity and pressure fields are found to change considerably with the adopted finite difference schemes. Drag forces computed in the various regions of the model indicate that design change decisions should not rely just on the total drag and that local flow structures are important. The results also indicate that the RNG model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient rather than the other cases.

  • PDF

Development of Automatic Geometry Design Program for 3-Dimensional Mechanical Element (3차원 기계요소를 위한 자동형상 설계프로그램 개발)

  • 김민주;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.126-134
    • /
    • 2003
  • In this study we do for the thing to develop automatic geometry design program of a mechanical element that we have used in CAD/CAM system. The program, which produces automatically three-dimensional surface and a solid model that have been used in CAD/CAM system, widely create automated two and three-dimensional model to by inputting several necessaries for a design, fur the design element. It is emphasized if you are just a beginner having only basic knowledge of the mechanical engineering, you might be able to design easily a three-dimensional model. The software to be used to develop automatic geometry design program is visualLISP to be a developer program of AutoCAD.

Three-Dimensional Thermohydrodynamic Analysis of Journal Bearings Operating in Turbulent Region Using $kappa-varepsilon$ Model (난류상태로 운전되는 저어널베어링에서의 $kappa-varepsilon$ 모델을 이용한 3-차원 THD해석)

  • 이득우;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.39-46
    • /
    • 1987
  • Frictional loss in turbulent regime is abnormally increased compared with in laminar regime. Thus the consideration of temperature rise across fluid film is significant in analysis and conventional isothermal theory loses its usefulness for performance prediction. This paper proposes to the three-dimensional thermohydrodynamic analysis of finite journal bearings operating under turbulent condition using two-equation model($\kappa-\varepsilon$ model) proposed by Hassid & Poreh. The equations are solved numerically by finite difference method. We make the analysis applicable even at large eccentricity when back flow of the lubricants occurs and axial flow is no longer ignored compared to circumferential flow.

Numerical Modeling of Turbulent Swirling Premixed Lifted Flames (선회유동을 가지는 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates

  • Asemi, Kamran;Salehi, Manouchehr;Sadighi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1067-1089
    • /
    • 2014
  • In this paper, three dimensional static and dynamic analyses of two dimensional functionally graded annular sector plates have been investigated. The material properties vary through both the radial and axial directions continuously. Graded finite element and Newmark direct integration methods have been used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good agreement.