• Title/Summary/Keyword: two- and three-dimensional model

Search Result 1,452, Processing Time 0.027 seconds

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

Performance estimation model of the three-dimensional pointing tasks in virtual environment systems (가상환경에서의 3차원 포인팅작업 성능평가 모형)

  • 박재희;박경수
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.253-258
    • /
    • 1996
  • Virtual reality environment system is expected to be used as a new user interface tool oweing to its high immersiveness and high interactivity. To use VR interface effectively, we should identify the characteristics of the three-dimensional control tasks as if we did in two-dimensional graphic user interface environments. As a first step, we validated Fitts'law for the three-dimensional pointing tasks with the two input devices, Spaceball and Spacemouse. Different from the two-dimensional control tasks, VR pointing tasks needed inclusion of a new variable, size of the moving object, to Fitts'law. The modified

  • PDF

A two-dimensional hyperbolic spring model for mat foundation in clays subjected to vertical load

  • Der-Wen Chang;Tzu-Min Chou;Shih-Hao Cheng;Louis Ge
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.527-538
    • /
    • 2024
  • This study proposes a two-dimensional hyperbolic soil spring model for mat foundations in clays subjected to vertically uniform loads to simplify the complexity of three-dimensional finite element analysis on mat foundations. The solutions from three-dimensional finite element analysis were examined to determine the hyperbolic model parameters of the soil springs underneath the slab. Utilizing these model parameters, normalized functions across the middle section of the mat were obtained. The solutions from the proposed model, along with the approximate finite difference analysis of the mat in clays under vertical load, were found to be consistent with those from the three-dimensional finite element analysis. The authors conclude that the proposed method can serve as an alternative for the preliminary design of mat foundations.

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

Modified Lysmer's analog model for two dimensional mat settlements under vertically uniform load

  • Chang, Der-Wen;Hung, Ming-He;Jeong, Sang-Seom
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • A two dimensional model of linearly elastic soil spring used for the settlement analysis of the flexible mat foundation is suggested in this study. The spring constants of the soils underneath the foundation were modeled assuming uniformly vertical load applied onto the foundation. The soil spring constants were back calculated using the three-dimensional finite element analysis with Midas GTS NX program. Variation of the soil spring constants was modeled as a two-dimensional polynomial function in terms of the normalized spatial distances between the center of foundation and the analytical points. The Lysmer's analog spring for soils underneath the rigid foundation was adopted and calibrated for the flexible foundation. For validations, the newly proposed soil spring model was incorporated into a two dimensional finite difference analysis for a square mat foundation at the surface of an elastic half-space consisting of soft clays. Comparative study was made for elastic soils where the shear wave velocity is 120~180 m/s and the Poisson's ratio varies at 0.3~0.5. The resulting foundation settlements from the two dimensional finite difference analysis with the proposed soil springs were found in good agreement with those obtained directly from three dimensional finite element analyses. Details of the applications and limitations of the modified Lysmer's analog springs were discussed in this study.

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

Simulation of buoyant turbulent flow in a stairwell (건물 계단통에서의 부력에 의한 난류유동 해석)

  • 명현국;진은주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.217-226
    • /
    • 1998
  • A numerical study has been carried out for two- and three-dimensional buoyant turbulent flow in a stairwell model. The Reynolds-averaged Navier-Stokes and energy equations are solved with the authors'own computer program. Two models by the Boussinesq approximation and the density-gradient form are used for buoyancy terms in the governing equations. Two- and three-dimensional predictions of the velocity and temperature fields are presented and the results are compared with experimental data. Comparisons have also been made in detail with two-dimensional predictions. Two-dimensional and three-dimensional simulations have predicted the overall features of the flow satisfactorily. A better agreement with experiment is achieved with three-dimensional simulations.

  • PDF

A Study on Development of the Three-Dimensional Numerical Model to Analyze the Casting Process: Mold Filling and Solidification

  • Mok Jinho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1488-1502
    • /
    • 2005
  • A three dimensional model was developed to analyze the mold filling and solidification in the casting processes. The model uses the VOF method for the calculation of the free surface and the modified Equivalent Specific Heat method for the treatment of the latent heat evolution. The solution procedure is based on the SIMPLER algorithm. The complete model has been validated using the exact solutions for phase change heat transfer and the experimental results of broken water column. The three-dimensional model has been applied to the benchmark test and the results were compared to those from experiment, a two-dimensional analysis, and another three dimensional numerical model.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.