• Title/Summary/Keyword: two temperatures theory

Search Result 57, Processing Time 0.025 seconds

Phase Behavior of Reversibly Associating Star Copolymer-like Polymer Blends

  • June Huh;Kim, Seung-Hyun;Jo, Won-Ho
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • We theoretically consider blends of two monodisperse one-end-functionalized homopolymers (denoted by A and B) capable of forming clusters between functional groups (stickers) using weak segregation theory. In this model system resulting molecular architectures via clustering resemble star copolymers having many A- and B-arms. Minimizing the total free energy with respect the cluster distribution, the equilibrium distribution of clusters is obtained and used for RPA (Random Phase Approximation) equations as input. For the case that polymers are functionalized by only one kind of sticker, the phase diagrams show that the associations promote the macrophase separation. When there is strong affinity between stickers belonging to the different polymer species, on the other hand, the phase diagram show a suppression of the macrophase separation at the range of high temperature regime, as well as the phase coexistence between a disordered and a mesoscopic phase at the relatively lower temperatures.

The Dependence of the Critical Temperature on the Dimensions of the Electron Motion (전자유체의 차원에 따른 임계온도의 변화)

  • Park, Seong-Hun;Kim, Mi-Yeon;Chair, Tong-Seek;Kim, Won-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.401-408
    • /
    • 1996
  • In general, the high temperature superconductors have two-dimensional anisotropic structures. It is important to investigate the dependence of the critical temperature on the dimensions of the electron's motion. The equation of state for electron gas is deduced which describes the electron's motion in superconductors using the kinetic theory of gas. And the critical temperatures of three, two, and one dimensional gases were calculated. According to these equations, restricting the dimension of the electron's motion induces the increase of the critical temperatures. This implies the possibility that the multi-critical temperature of some superconductors is caused by the change of the dimension related to the pathways of the electron.

  • PDF

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

Precision and accuracy of CARS spectrometer for instantaneous temperature measurement (순간 온도 측정을 위한 CARS 분광기의 정밀 정확도 분석)

  • 박승남;박철융;한재원;길용석;정석호
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.348-356
    • /
    • 1996
  • A mobile CARS spectrometer is constructed to measure the instantaneous temperature of gases, of which software include the quick fit methods and a least square fitting method to obtain temperatures from the spectra. Two quick-fit-methods give smaller variance of temperatures than the least square fitting method even though they consume much shorter time to yield temperatures. The precision and accuracy of CARS temperature is measured in the graphite tube blackbody furnace in reference to a radiation pyrometer. The accuracy of the CARS temperature is $\pm$2% from 1000K to 2400K and the precision is $\pm$35K at 1600K with the most accurate quick-fit-method. As a demonstration of the instantaneous measurement, the spectrometer is applied for measurement of the turbulent combustion at a certain condition. eograms(HS) are made using a relatively small number of synthesized 2D images. The influence of aliasing artifacts caused by insufficient or improper sampling is presented, and a new sampling theory is proposed, which is used to making holographic stereograms. Also, the optical system for extension of viewing distance and viewing zone is proposed. Results of this analysis can be applied to design normal holographic stereograms and computer based holographic stereograms.

  • PDF

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

The Prediction of Solvent Mutual Diffusion Coefficient Using Vrentas-Duda's Self Diffusion Theory (Vrentas-Duda의 자기확산이론을 이용한 용매의 상호확산계수 예측)

  • 김종수;이광래;김기창
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • To estimatc mutual diffusion coefficient for the analysis of mass transfer phenomena in polymer/solvent system, two models are proposed and the equations are derived. The estimates of mutual diffusion coefficients are obtained by two models suggested in this work and compared with and experimental data and Vrentas-Duda's. Vrentas-Duda's self diffusion coefficient was used for the mutual diffusion coefficient. Derivative of chemical potential on solvent was derived and used using original UNIFAC-FV and modified UNIFAC-FV. However, Vrentas-Duda's equation for mutual diffusion coefficient contains Flory-Huggins parameter x. For the derivative of chemical potential term, Vrentas-Duda assumed that parameter x was constant and independent of temperatures and concentrations The assumption is one of shortcoming in vrentas-Duda's mutual diffusion coefficient. New methods proposed in this work do not have such assumptions and simplifications. For the solvent of cyclohexane, n-pentane, and n-hexane in PIB(polyisolbutylene) and PMS-BR (poly(p-methylstyrene-co-isobutylene), new methods well correlate the experimental data at various temperatures and concentrations, and predicted the experimental data much better than Vrentas-Duda's for the PIB/toluene system. It is shown that new methods are excellent tools for correlating mutual diffusion coefficient data in polymer/solvent system over wide ranges of temperature and concentration without any assumptions or simplifications.

  • PDF

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

Spectroscopic investigations on the interaction of bovine serum albumin with amoxicillin and cloxacillin

  • BHALCHANDRA P. KAMAT,
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • The mechanism of interaction of two drugs viz., amoxicillin and cloxacillin with bovine serum albumin has been investigated using fluorescence absorption and circular dichroism spectroscopy. The quenching mechanism of fluorescence of bovine serum albumin by amoxicillin and cloxacillin was discussed. The binding sites number n and apparent binding constant Kwere measured by fluorescence quenching method. The thermodynamic parameters obtained from data at different temperatures were calculated. The distance r between donor (bovine serum albumin) and acceptor (amoxicillin and cloxacillin) was obtained according to Forster theory of non-radiative energy transfer. The effect of common ions on binding constant was also investigated. The results of synchronous fluorescence spectra, UV-vis absorption spectra and circular dichroism of BSA in presence of amoxicillin and cloxacillin show that the conformation of bovine serum albumin changed

  • PDF

Molecular Theory of Plastic Deformation (Ⅲ)$^*$

  • Kim, Jae-Hyun;Ree, Tai-Kyue;Kim, Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • (1) The flow data of f (stress) and ${\dot{s}$ (strain rate) for Fe and Ti alloys were plotted in the form of f vs. -ln ${\dot{s}$ by using the literature values. (2) The plot showed two distinct patterns A and B; Pattern A is a straight line with a negative slope, and Pattern B is a curve of concave upward. (3) According to Kim and Ree's generalized theory of plastic deformation, pattern A & B belong to Case 1 and 2, respectively; in Case 1, only one kind of flow units acts in the deformation, and in Case 2, two kinds flow units act, and stress is expressed by $f={X_1f_1}+{X_2f_2}$where $f_1\;and\;f_2$ are the stresses acting on the flow units of kind 1 and 2, respectively, and $X_1,\;X_2$ are the fractions of the surface area occupied by the two kinds of flow units; $f_j=(1/{\alpha}_j) sinh^{-1}\;{\beta}_j{{\dot{s}}\;(j=1\;or\;2)$, where $1/{\alpha}_j\;and\;{\beta}_j$ are proportional to the shear modulus and relaxation time, respectively. (4) We found that grain-boundary flow units only act in the deformation of Fe and Ti alloys whereas dislocation flow units do not show any appreciable contribution. (5) The deformations of Fe and Ti alloys belong generally to pattern A (Case 1) and B (Case 2), respectively. (6) By applying the equations, f=$(1/{\alpha}_{g1}) sinh^-1({\beta}_{g1}{\dot{s}}$) and $f=(X_{g1}/{\alpha}_{g1})sinh^{-1}({\beta}_{g1}{\dot{s}})+ (X_{g2}/{\alpha}_{g2})\;shih^{-1}({\beta}_{g2}{\dot{s}})$ to the flow data of Fe and Ti alloys, the parametric values of $x_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gs}(j=1\;or\;2)$ were determined, here the subscript g signifies a grain-boundary flow unit. (7) From the values of ($({\beta}_gj)^{-1}$) at different temperatures, the activation enthalpy ${\Delta}H_{gj}^{\neq}$ of deformation due to flow unit gj was determined, ($({\beta}_gj)^{-1}$) being proportional to , the jumping frequency (the rate constant) of flow unit gj. The ${\Delta}H_{gj}\;^{\neq}$ agreed very well with ${\Delta}H_{gj}\;^{\neq}$ (self-diff) of the element j whose diffusion in the sample is a critical step for the deformation as proposed by Kim-Ree's theory (Refer to Tables 3 and 4). (8) The fact, ${\Delta}H_{gj}\;^{\neq}={\Delta}H_{j}\;^{\neq}$ (self-diff), justifies the Kim-Ree theory and their method for determining activation enthalpies for deformation. (9) A linear relation between ${\beta}^{-1}$ and carbon content [C] in hot-rolled steel was observed, i.e., In ${\beta}^{-1}$ = -50.2 [C] - 40.3. This equation explains very well the experimental facts observed with regard to the deformation of hot-rolled steel..