• Title/Summary/Keyword: two stage culture system

Search Result 68, Processing Time 0.03 seconds

Two-Stage Multichannel Architecture for Oyster Product Management System

  • Yang, Yeong-Yil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 2019
  • In this paper, we propose two-stage multichannel architecture for oyster product management system, called cloud stage and agent stage. There are two communication channels at each stage. In cloud stage, the embedded system in the smart scale communicates with the server through two channels, Ethernet or 3G/LTE mobile communication. In agent stage, PCs and smart phones called agents communicate with the server also through Internet and 3G/LTE mobile communication. Compared with previous system in which the amount of the oyster produced in oyster workplaces could be monitored only at the console of only one oyster main server, developed system makes it possible to monitor the amount of produced oyster at several PCs (or smart phones). In addition to the amount of oysters produced at all oyster workplaces the environment of oyster workplaces such as temperature and humidity can be monitored on agents to judge the freshness. Two-stage architecture with multiple channels makes it possible to monitor the amount of oyster product and environment of the oyster workplace at any place in real time.

Production of 3-Ketosteroid-delta-1-Dehydrogenase by a Two-stage Continuous Culture

  • Ryu, D.Y.;Lee, B.K.;Thoma, R.W.
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1974
  • We have studied the applicability of the principles and inherent advantages of the two-stage dontinuous uclture technique to an enzyme process for the purpose of improving and optimizing the productivity of 3-ketosteroid-delta-1-dehydrogenase. By using a two-stage continuous culture system, the growth st ageand enzyme produdtion stage are separated. In each stage an optimal set of toperaing conditions was determined, and this was tested for feasibility for the period of 10 days. During this period, at least 70% of the maximum enzyme productivity could be maintained. The important design parameters studied are: (1) optimal specific growth rate in the first stage which corresponds to the maximal cell productivity, (2) the optimal dilution rate in the second stage which in turn determines the size of second stage fermentor and the mean residence time of cells in the second stage, (3) cell concentration in both stages, add (4) the specific enzyme productivity and enzyme productivity of the second stage. In addition, by using two-stage continuous culture system we have been able to reduce or eliminate the effect of catabolite repression due to high medium concentration and the adverse effect of the solvent used to dissolve the inducer. We have found the balance between the opposing effects of induction and repression in the second stage judging from the observation that the enzyme productivity goes through a maximum.

  • PDF

Production of Pyruvate Dehydrogenase Complex-E2 Specific Human Monoclonal Antibody in Fed-batch Culture Systems with High Cell Density Recombinant Escherichia coli (고농도 재조합 대장균의 Fed-batch 배양 시스템을 이용한 Pyruvate Dehydrogenase Complex-E2 특이성 인간 모노클론 항체의 생산)

  • 이미숙;전주미;차상훈;정연호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.489-496
    • /
    • 2000
  • Several culture systems including batch, two-stage CSTR, semi-fed batch, and two-stage cyclic fed-batch were investigated for the efficient production of the Fab fraction of PDC-E2 specific human monoclonal antibody using high cell density recombinant E. coli. A two-phase batch system and a two-stage continuous system were examined to overcome plasmid instability problems, by separating the growth and the production stages. The cell density and productivity of the two-stage continuous culture was better than that of the two-phase batch fermentation. In the two-stage continuous culture system with DO-stat, the cell growth and the productivity were superior to those of the system without the DO control. Also, almost total plasmid stability was maintained in the two-stage continuous culture system. Modified M9 medium was selected as an optimum feeding medium for the fed-batch process, and the optimum C/N ratio determined to be 2:3. The optimum feeding rate was $0.6g/\ell/hr$ for a constant feeding strategy in semi-fed batch system. When the feeding medium was fed by pulsing, it was observed that more frequent pulsing resulted in improved cell growth. The linear feeding method was the most efficient of the various feeding methods tested. Finally, high cell density culture using a two-stage cyclic fed batch system with pH-stat was tried because the linear feeding method showed limitations in terms of obtaining high cell densities, and a cell density of $54 g/\ell$ was achieved. It was concluded that the two-stage cyclic fed batch system was the most efficient system for high cell density culture of the systems tested. However, productivity improvements were lower than expected due to the extremely high accumulations of acetate, although the low levels of residual glucose were maintained.

  • PDF

Studies on Tissue Culture of Perilla Species (자소(紫蘇)의 조직배양에 관한 연구(II))

  • Shin, Soon-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.7-11
    • /
    • 1986
  • The young leaf of Perilla species was cultured by two stage culture system using the medium containing mevalonic acid lactone. The growth rate and productivity of essential oil of callus were increased. The essential oil from intact plant and callus was also analysed. Sesquiterpene hydrocarbons and one sesquiterpene alcohol were identified in essential oils of callus.

  • PDF

Studies on Corn-Legume intercropping System V. Effect of corn-legume intercropping system ondry matter yield and chemical composition in silage (Silage용 옥수수와 두과작물의 간작에 관한 연구 V. Silage용 옥수수 ( Zea mays L. ) 와 두과작물의 간작이 건물수량과 silage의 영양성분함량에 미치는 영향)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 1990
  • Although corn is regarded as the most feasible forage corp, its relatively low content of protein is the critical we a kness for animal feeding. Many researches have been carried out to improve protein level in corn forage, however, there are no indicatable results but corn-legume intercropping. Plot test and proximate analysis were fullfill to compare dry matter yield and available nutrients of silage corn mono-culture system with those of corn-legume intercropping system of forage plant and silage. The MO culture system were observed by two stage of maturity, milk stage (Aug. 3), yellow stage (Aug. 24), and obtained following results. 1. Dry matter yields per 10 a at milk stage in corn mono-culture system was 596.2kg and corn-legume intercropping systems were 609.0 kg (corn-cowpea), 591.0 kg (corn-soybean) and 563.1 kg (corn-frenchbean), respectively. And comparable to them, 1508.9 kg (corn mono.), 1482.8 kg (corn-cowpea), 1482.6 kg (cornsoybean), 1379.1 kg (corn-frenchbean) were harvested at yellow stage. 2. The general trends of chemical composition by stages of maturity in corn mono-culture systems were higher than that of corn-legume intercropping system. 3. Crude protein content in corn-legume silages were significantly higher than corn mono-culture at yellow stage, except corn-frenchbean intercropping system. 4. Crude fiber content in corn-legume silage was higher than corn mono-culture silage harvested at yellow stage. 5. Consequently, corn-legume intercropping improved nutritional quality of silage than that of corn-monocultivated silage.

  • PDF

Botryococcus braunii 배양에서 탄화수소의 two-stage 동시추출공정

  • An, Jin-Yeong;Choe, Jeong-Gyu;Sim, Sang-Jun;Kim, Byeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.229-232
    • /
    • 2000
  • The carbon dioxide, nitrogen, and phosphate removals from wastewater using microalgae have extensively been studied. Especially, the green colonial algae Botryococcus braunii is characterized by unusual high hydrocarbon contents, ranging from 15 to 75% of dry weight, as long-chain unsaturated hydrocarbons. These hydrocarbons suggest that the possibility of renewable biofuels to be converted into useful fuels such as gasoline by simple catalytic cracking. The poor recovery (18 - 32%) of hydrocarbon from B. braunii culture in two-phase bubble column seems to be caused by insufficient mixing between two phases, which was operated using only aeration on the narrow interface between hydrophobic solvent and cell suspension. In addition, hydrocarbon was entrapped tightly in cell-matrix (formed by exopolysaccharide) of algal colony, which make difficult to extract using two-phase system. In order to overcome low recovery efficiency, two-stage extraction culture system including culture vessel and two-phase separator is now under development, resulted improving contact between solvent phase and cell suspension. Hydrocarbon recovery using this process was more than two times as that using two-phase extraction culture.

  • PDF

Analysis of two-stage Continuous Culture System by Transient Response of Single-stage Continuous Culture System (일단 연속 생물반응기의 과도상태 거동을 이용한 이단 연속 생물반응기의 해석)

  • 박성훈;공인수
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.308-316
    • /
    • 1992
  • Two-stage continuous culture system has been studied intensively to maximize the productivity of a cloned gene product in unstable recombinant microorganism. As an effort to optimize the two-stage process, transient behavior of the second-stage was studied theoretically as well as experimentally using Escherichia coli Kl2$\delta$Hl$\delta$trp. A mathematical model describing the transient response to a step change in dilution rate was developed based on the assumption that the adaptation rate of cell growth is proportional to the available growth potential, which is defined as the difference in dilution rates between before and after shift-up. The kinetic parameters appearing in the model equations were the dimensionless step increase in growth rate($\alpha$) and the adaptation rate constant(k). These parameters were evaluated for various dilution rates and temperatures by washout method. This relatively simple adaptation model could predict the specific growth rate of the second-stage successfully. Advantage and disadvantage of the proposed model are also discussed.

  • PDF

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF

Production of Normal Calves after Transfer of IVF-Derived Bovine Embryos (체외수정란 유래의 송아지 생산)

  • 한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 1994
  • To verify in vivo viability of IVF-derived bovine embryos, morula and blastocysts that developed from in vitro matured and fertilized ova were transferred to the uteri of recipient cows and normal calves were produced. To produce IVF-derived bovine morula or blastocysts, ova matured and fertilized in vitro were cultured in culture medium for 7~8 days at 39$^{\circ}C$ under the humicified atmosphere of 5% CO2. Two different culture systems, a co-culture system with TCM-199 and bovine epithelial cells (BOEC) and CR1aa without somatic cell support, were compared. Cleavage rates to 2~8 cell stage and developmental rates of IVF-derived bovine embryos to blastocyst stage were not different between co-culture system (51.3 and 14.0%) and CR1aa medium (60.4 and 22.1%), respectively. Embryos were classified into three grades by embryo quality and then one or two embryos in higher quality(A and B grades) were transferred to the uterus of recipients. In this study Korean Native calf was first born after transfer of IVF-derived embryos. Total four live calves were normally developed to term from IVF-derived bovine blastocysts and one female fetus was still-born approximatedly 8 months of gestation, but there was no pregnancy after transfer of morula. Therefore, normal calves could be produced after transfer of IVF-derived bovine embryos cultured in CR1aa medium without somatic cell support. In addition, our results suggest that in transfer of IVF-derived bovine embryos blastocyst stage is better than morula.

  • PDF

Enhanced Production of Shikonin by Using Polyurethane-entrapped Lithospermum erythrorhizon Cells (Polyurethane Foam 에 포괄시킨 Lithospermum erythrorhizon 세포에 의한 Shikonin 생산)

  • Taek, Seo-Weon;Liu, Jang-Ryol;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.343-348
    • /
    • 1989
  • Production of shikonin derivatives by Lithospermum erythrorhizon cells by using polyurethane foam was invesliigated. Shikonin derivatives were effectively adsorbed mostly by phase distribution to polyurethane matrices and their production increased significantly compared to the suspension culture. The enhanced production of shikonin was probably due to more facilitated cell to cell con-tact and lowered intracellular shikonin concentration, both of which are known to be favorable for plant secondary metabolite production. In order to improve the process productivity, tell culture was conducted under various culture conditions: Of them, Schenk and Hildebrandt medium containing indole-3-acetic acid (1.75mg/ι) and kinetin (0.1mg/ι) was considered most appropriate for shikonin production. Production of shikonin increased about 4.5 times in the Schenk and Hildebrandt medium containing indole-3-acetic acid (1.15mg/ι) and kinetin (0.1mg/ι) when compared to the same medium containing p-chlorophenoxyacetic acid (2.0mg/ι) and kinetin (0.1mg/ι). When poly-urethane was used as the support material, a single-stage system was more preferred to the conventional two-stage culture system in terms of shikonin productivity.

  • PDF