• Title/Summary/Keyword: two phase turbulent flow

Search Result 140, Processing Time 0.021 seconds

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

Hydrodynamic Characteristics of Circulating Fluidized Bed Incinerator (순환유동층 소각로의 수력학적 특성에 관한 연구)

  • Byun, Y.C.;Park, S.H.;Hwang, J.H.;Kim, S.W.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.173-182
    • /
    • 1999
  • Internally Circulating Fluidized Bed Combustor(ICFBC) has been used for the incineration of waste sewage sludge. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of ICFBC. A lab-scale riser(l/5 scale of pilot plant) is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity, particle diameter and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Our flow regime during experiments mainly belongs to the onset of turbulent regime(for d_{p}:300{\mu}m) and fast fluidization regime(for d_{p}:100{\mu}m). Superficial velocities of each regime are well agreed with results obtained by other researches. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. As the particle size decreases, solid holdup along the riser is more uniformly distributed. To prove these experimental results, numerical calculations are being performed.

  • PDF

Performance of Evaporation Heat Transfer Enhancement and Pressure Drop for Liquid Nitrogen (액체질소에 대한 증발 열전달 촉진 및 압력강하 성능)

  • Nam, Sang-Chul;Lee, Sang-Chun;Park, Byung-Duck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.363-372
    • /
    • 2000
  • An experiment was carried out to evaluate the heat transfer enhancement and the pressure drop characteristics for liquid nitrogen using wire-coil-insert technique under horizontal two-phase conditions. The tube inner diameters were 8 mm and 15 mm, respectively and the tube length was 4.7 m. The helix angle of the wire coil insert was $50^{\circ}$ and its length was 4.7 m. Heat transfer coefficients for both the plain and the enhanced test tubes were calculated from the measurements of temperatures, flow rates and pressure drops. A correlation in a power-law relationship of the Nusselt number, Reynolds number and Prandtl number for the heat transfer was proposed which can be available for design of cryogenic heat exchangers. The correlation showed that heat transfer coefficients for the wire-coil inserts were much higher than those for plain tubes, increased by more than $1.8{\sim}2.0$ times depending upon the range of the equivalent Reynolds number. The correlation was compared with other various correlations in the turbulent flow conditions.

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Large-scale structure of circular jet in transitional region at reynolds number of ${10}^{4}$ (Reynolds수 ${10}^{4}$일때 천이영역에서의 왼형제트의 Large-Scale 구조에 관한 연구)

  • 이택식;최은수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.823-829
    • /
    • 1986
  • The Large-scale structure of the circular jet in the transition region, which influences the subsequent flow in the turbulent region, was studied experimentally. Measuring equipments are composed of the two channel hot-wire anemometer, the computer controlled two-directional traverse mechanism, the data acquisition system, and FFT-analyzer. The circular jet has 50mm diameter. The mean velocity distribution, the velocity fluctuation, the auto 'cross correlations and the power spectra were acquired at moderate Reynolds number of 10$^{4}$. And the VITA method was used to measure the convection velocity of Large-scale eddy. The phase of u'is in advance of that of v'in all regions. .over bar. $R_{u}$(.tau.=0) is approximately zero in the potential core region, but a small regular deviation is observed. At a position in the mixing layer region the convection velocity is different along the part of the eddy, and in this experiment the convection velocity of the inner region is larger than the outer region. The averge convection velocity of the eddy along y/D=0 was approximately constant in the transition region.D=0 was approximately constant in the transition region.

Suggestion of the Analysis Model and Verification on Rotating Flow in Stirred Tanks Using CFD (전산유체역학을 이용한 교반 탱크 내에서의 회전유동에 대한 해석 모델의 제안 및 검증)

  • Hwang, Seung Sik;Yong, Cho Hwan;Choi, Gyuhong;Shin, Dohghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • Stirred tank is widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. For designing agitator of high performance, quantity data of internal flow characteristics influenced by mixing performance are definitely confirmed but quantity analysis about the transient flow characteristics of complicate structure is recognized as difficult problem in the present. In this study, two models of commercial CFD code Fluent 6.3 used to propose suitable for the tank analysis. Agitation of Stirred tank is analyzed using a mixed model and the flow in the stirred tank is analyzed using a standard k-${\varepsilon}$ model. Multiple reference frame(MRF) and Sliding mesh(SM), the analysis techniques were used For compare a result of CFD with a visualization experiment result, to grasp internal flow and mixing characteristic in stirred tank and to present fundamental analysis method.

Numerical Study on Transfer Port Design for Scavenging Performance in Small Two-stroke Engines (소형 2행정 엔진의 전송 포트 형상에 따른 소기 성능에 대한 수치 해석적 연구)

  • Kim, Cheonghwan;Park, Sungho;Kim, Myeongkyu;Ahn, Eunsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.28-44
    • /
    • 2020
  • In this paper, the scavenging process of various transfer ports was evaluated to improve the performance of a small two-stroke engine for unmanned aerial vehicles. Three-dimensional computational fluid dynamics simulations were performed to four transfer ports for the evaluation, and a three-phase scavenging model was developed and applied to the simulation results for the quantitative comparison of scavenging performance. the short-circuit of fresh charge was restrained and an in-cylinder turbulent kinetic energy was enhanced by changing the transfer port. Also, a difference in the scavenging for each port were confirmed by applying the three-phase model to the simulation results.

A Numerical Simulation of Wave Run-up Around Circular Cylinders in Waves (파랑중 원형 실린더 주위 Wave Run-up 시뮬레이션)

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Seo, Kwang-Cheol;Koo, Bon-Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.750-757
    • /
    • 2016
  • This study presents the wave run-up height around single and multiple surface-piercing cylinders according to wave period and steepness. In order to simulate 3D incompressible viscous two-phase turbulent flow, the present study employed a volume of fluid (VOF) method with realizable $k-{\varepsilon}$ turbulence model based on commercial Computational Fluid Dynamics (CFD) software, "STAR-CCM". The wave periods at model scale were 1.269s and 1.692s for a single cylinder and 1.716s for multiple cylinders. In each case, wave steepness of has 1/30 and 1/16 were used, respectively. Consequently, the results for wave run-up height with regard to wave steepness and period were compared with those of relevant previous experimental studies. The numerical simulation results showed a good qualitative agreement with experiments.