• 제목/요약/키워드: two mass spring system

검색결과 118건 처리시간 0.03초

자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구 (Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope)

  • 임영모;박지상;김병규;박종오;김수현
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF

탄성 지지된 밸브 배관계의 안정성에 미치는 크랙의 영향 (Crack Effects on Dynamic Stability of Elastically Restrained Valve-pipe System)

  • 허관도;손인수
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.79-86
    • /
    • 2011
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated. The pipe system with a crack is modeled by using extended Hamilton's Principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. In this paper, the influence of attached mass, its position and crack on the dynamic stability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by the changing parameters.

각속도계 적용을 위한 이중 질량 시스템의 주파수 응답에 관한 연구 (A study on frequency response of two-mass system for gyroscope applications)

  • 황영석;정형균;송은석;백창욱;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.154-155
    • /
    • 2007
  • This paper describes frequency response of two-mass system for gyroscope applications. The two-mass system of the proposed device is adapted to the sensing part of the gyroscope in this research. Two-mass system has two resonant peaks and wide flat region between two resonant peaks. The resonant frequency of driving part is in this flat region. Therefore, frequency tuning is not necessary for mode matching. In the proposed device, resonant frequency is designed as 7183 Hz in driving part. Mass ratio of two masses in sensing part is 0.1 and device size is 6 mm $\times$ 6 mm. The device is fabricated by SiOG process. The fabricated spring width is increased from $4{\mu}m$ to $4.5{\sim}4.7{\mu}m$, and the measured resonant frequency is 8392 Hz in driving mode. We operated the sensing part using parallel plate of proof mass to verify the sensing part. It is confirmed the device has a wide fiat region in frequency response curve and the resonant frequency of the driving part is in the wide flat region of sensing mode.

  • PDF

MATHEMATICAL ANALYSIS USING TWO MODELING TECHNIQUES FOR DYNAMIC RESPONSES OF A STRUCTURE SUBJECTED TO A GROUND ACCELERATION TIME HISTORY

  • Kim, Yong-Woo;Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.361-374
    • /
    • 2011
  • Two types of numerical modeling techniques were considered for the dynamic response of a structure subjected to a ground acceleration. One technique is based on the equation of motion relative to ground motion, and the other is based on the equation of absolute motion of the structure and the ground. The analytic background of the former is well established while the latter has not yet been extensively verified. The latter is called a large mass method, which allocates an appropriate large mass to the ground so that it causes the ground to move according to a given acceleration time history. In this paper, through the use of a single degree-of-freedom spring-mass system, the equations of motion of the two techniques were analyzed and useful theorems are provided on the large mass method. Using simple examples, the numerical results of the two modeling techniques were compared with analytic solutions. It is shown that the theorems provide a clear insight on the large mass method.

자기 수평유지 시스템을 위한 변위 적분 피드백제어 연구 (Integrated Displacement feedback Control of a Self-Levelling System)

  • 이영섭;신구균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.504-507
    • /
    • 2005
  • This paper presents a self-levelling system for a mass, which undergoes a severe acceleration, with integrated displacement feedback control. After a general description of such a system, theoretical analysis is investigated to design an active control device. That is, the self levelling system is used to reduce the 'static' deflections while isolating the 'dynamic' vibration. A computer simulation model of 45 kg with two air spring mounts is considered to predict the performance of the control system. The results showed the controller can reduce the mass's displacement to the level of 1/3-1/5. Thus the self-levelling system can be applied usefully to reduce the dispalcement of a mass which experiences a high g dynamics.

  • PDF

A semi-active smart tuned mass damper for drive shaft

  • 채교초;박정헌;이철희;박정률;윤동영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

이중크랙을 가진 보의 동특성에 미치는 끝단질량과 이동질량의 영향 (Influence of Tip Mass and Moving Mass on Dynamic Behavior of Beam with Double-Crack)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.713-716
    • /
    • 2004
  • In this paper a dynamic behavior of a double-cracked cnatilver beam with a tip mass and the moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, a tip mass and double cracks have been studied on the dynamic behavior of a cantilever beam system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. ,Therefore, the cracks are modelled as a rotational spring. Totally, as a tip mass is increased, the natural frequency of cantilever beam is decreased. The position of the crack is located in front of the cantilever beam, the frequencies of a double-cracked cantilever beam presents minimum frequency.

  • PDF

컨테이너 상차 시 트레일러 현가장치의 최적설계 (Optimum Design of Suspension in Loading Container on Trailer)

  • 김재헌;홍도관;김중완;전언찬;안찬우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.710-715
    • /
    • 2001
  • This research is presented for optimizing the coefficients of spring and damper by impact load which is applied to a trailer when the containers are loaded up trailer. The procedure utilize the condition that two containers, initial velocity of container, initial height of container and maximum of suspension stroke. The coefficients of spring and damper are calculated numerically through Newmark method uses finite difference expansions. The procedure of calculation is applied by one DOFs of mass-spring-damper system. The coefficients of spring and damper have large value as increase of height or decrease of stroke. The result of calculation is investigated and is used AGV design.

  • PDF

CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구 (An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System)

  • 김태한;심우건;한상구;정종식;김선철
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.