• Title/Summary/Keyword: two dimensional finite element analysis

Search Result 1,084, Processing Time 0.031 seconds

Analysis for Properties of Ceramic/Metal Composite Based on Micromechanics of materials (세라믹/금속복합재료에 대한 미시역학적 특성해석)

  • 김병식;김태우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.144-148
    • /
    • 2001
  • A proper estimation of the mechanical properties for composites has been required for better design/selection of constituents for composite materials. Present investigation shows the simulation results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting transverse mean stress with the transverse mean strain was described for composites as a function of the volume fraction with two different types of interfacial bonding: (1)strongly bonded interface, and (2)no bonded interface. A two-dimensional finite element modeling and analysis were conducted based on the unit-cell concept with an assumption of a regular square arrangement of the reinforcement within the composite. The mean stress was generally increased with the ceramic volume fraction for composite with strong interface bonding. The micromechanics concept combined with finite element modeling for composite can be used in order to predict the transverse properties of composites with a priori known properties of constituents.

  • PDF

The Analysis of GaAs NESFET Device by Finite Element Method (유한요소법에 의한 GaAs MESFET소자의 해석)

  • Song, Nag-Un
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • In this work, two-dimensional finite element method code is developed to characterize GaAs MESFET devices. Here, two coupled equations, i.e., Poisson equation and current continuity equation, are solved iteratively by Gummel's scheme. The energy transport equation is incorporated with these to include the temperature information. By this method, the GaAs MESFET device is analyzed by calculating the potential and electron concentration distribution. from these the I-V characteristics and other device parametersare obtained and discussed. It is comfirmed that this method can be effectively used in the device level simulation and characterization and can be extended to the small and large signal analysis of the device.

  • PDF

Finite Element Analysis of Fluid Flows with Moving Boundary

  • Cha, Kyung-Se;Park, Jong-Wook;Park, Chan-Guk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.683-695
    • /
    • 2002
  • The objective of the present study is to analyze the fluid flow with moving boundary using a finite element method. The algorithm uses a fractional step approach that can be used to solve low-speed flow with large density changes due to intense temperature gradients. The explicit Lax-Wendroff scheme is applied to nonlinear convective terms in the momentum equations to prevent checkerboard pressure oscillations. The ALE (Arbitrary Lagrangian Eulerian) method is adopted for moving grids. The numerical algorithm in the present study is validated for two-dimensional unsteady flow in a driven cavity and a natural convection problem. To extend the present numerical method to engine simulations, a piston-driven intake flow with moving boundary is also simulated. The density, temperature and axial velocity profiles are calculated for the three-dimensional unsteady piston-driven intake flow with density changes due to high inlet fluid temperatures using the present algorithm. The calculated results are in good agreement with other numerical and experimental ones.

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

Finite Element Analysis of Solidification Process Using the Temperature-Enthalpy Relationship (온도-엔탈피 관계를 이용한 응고과정의 유한요소 해석)

  • Cho, Seong Soo;Ha, Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1213-1222
    • /
    • 1999
  • A finite element method is developed for calculating the temperature and enthalpy distribution and accordingly the solid, liquid and mushy zone in a three-dimensional body subjected to any heat boundary conditions. The method concurrently consider both temperature and enthalpy for consideration of the latent heat effect, differently from other methods of using a special energy balance equation for solving a mushy zone. The developed brick element has eight nodes with one degree of freedom at each node. The numerical method and procedure are verified using the results of one and two dimensional analytic solutions and by other researchers. It is shown that the present method presents a consistent and stable results in either abrupt or ranged phase change problems. Moreover, the numerical results by the present method are hardly effected by the calculation time steps which otherwise are difficult to determine in most phase change problems. Finally, as a three-dimensional application, a T-shaped body of a phase change is presented and the temperature and enthalpy variation along the time are solved.

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.